Deep learning-enabled medical computer vision

A Esteva, K Chou, S Yeung, N Naik, A Madani… - NPJ digital …, 2021 - nature.com
A decade of unprecedented progress in artificial intelligence (AI) has demonstrated the
potential for many fields—including medicine—to benefit from the insights that AI techniques …

A survey on deep learning in medical image analysis

G Litjens, T Kooi, BE Bejnordi, AAA Setio, F Ciompi… - Medical image …, 2017 - Elsevier
Deep learning algorithms, in particular convolutional networks, have rapidly become a
methodology of choice for analyzing medical images. This paper reviews the major deep …

Artificial intelligence in healthcare

KH Yu, AL Beam, IS Kohane - Nature biomedical engineering, 2018 - nature.com
Artificial intelligence (AI) is gradually changing medical practice. With recent progress in
digitized data acquisition, machine learning and computing infrastructure, AI applications …

[HTML][HTML] Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension

SC Rivera, X Liu, AW Chan, AK Denniston… - The Lancet Digital …, 2020 - thelancet.com
The SPIRIT 2013 statement aims to improve the completeness of clinical trial protocol
reporting by providing evidence-based recommendations for the minimum set of items to be …

Contrastive learning of medical visual representations from paired images and text

Y Zhang, H Jiang, Y Miura… - Machine Learning …, 2022 - proceedings.mlr.press
Learning visual representations of medical images (eg, X-rays) is core to medical image
understanding but its progress has been held back by the scarcity of human annotations …

Transfusion: Understanding transfer learning for medical imaging

M Raghu, C Zhang, J Kleinberg… - Advances in neural …, 2019 - proceedings.neurips.cc
Transfer learning from natural image datasets, particularly ImageNet, using standard large
models and corresponding pretrained weights has become a de-facto method for deep …

Opportunities and obstacles for deep learning in biology and medicine

T Ching, DS Himmelstein… - Journal of the …, 2018 - royalsocietypublishing.org
Deep learning describes a class of machine learning algorithms that are capable of
combining raw inputs into layers of intermediate features. These algorithms have recently …

Digital technology, tele-medicine and artificial intelligence in ophthalmology: A global perspective

JPO Li, H Liu, DSJ Ting, S Jeon, RVP Chan… - Progress in retinal and …, 2021 - Elsevier
The simultaneous maturation of multiple digital and telecommunications technologies in
2020 has created an unprecedented opportunity for ophthalmology to adapt to new models …

A review on deep learning in medical image analysis

S Suganyadevi, V Seethalakshmi… - International Journal of …, 2022 - Springer
Ongoing improvements in AI, particularly concerning deep learning techniques, are
assisting to identify, classify, and quantify patterns in clinical images. Deep learning is the …

Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with …

DSW Ting, CYL Cheung, G Lim, GSW Tan, ND Quang… - Jama, 2017 - jamanetwork.com
Importance A deep learning system (DLS) is a machine learning technology with potential
for screening diabetic retinopathy and related eye diseases. Objective To evaluate the …