Deep clustering: A comprehensive survey

Y Ren, J Pu, Z Yang, J Xu, G Li, X Pu… - IEEE transactions on …, 2024 - ieeexplore.ieee.org
Cluster analysis plays an indispensable role in machine learning and data mining. Learning
a good data representation is crucial for clustering algorithms. Recently, deep clustering …

A comprehensive survey on multi-view clustering

U Fang, M Li, J Li, L Gao, T Jia… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
The development of information gathering and extraction technology has led to the
popularity of multi-view data, which enables samples to be seen from numerous …

Multi-view contrastive graph clustering

E Pan, Z Kang - Advances in neural information processing …, 2021 - proceedings.neurips.cc
With the explosive growth of information technology, multi-view graph data have become
increasingly prevalent and valuable. Most existing multi-view clustering techniques either …

Dual contrastive prediction for incomplete multi-view representation learning

Y Lin, Y Gou, X Liu, J Bai, J Lv… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
In this article, we propose a unified framework to solve the following two challenging
problems in incomplete multi-view representation learning: i) how to learn a consistent …

Trusted multi-view classification with dynamic evidential fusion

Z Han, C Zhang, H Fu, JT Zhou - IEEE transactions on pattern …, 2022 - ieeexplore.ieee.org
Existing multi-view classification algorithms focus on promoting accuracy by exploiting
different views, typically integrating them into common representations for follow-up tasks …

Highly-efficient incomplete large-scale multi-view clustering with consensus bipartite graph

S Wang, X Liu, L Liu, W Tu, X Zhu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Multi-view clustering has received increasing attention due to its effectiveness in fusing
complementary information without manual annotations. Most previous methods hold the …

Multi-level feature learning for contrastive multi-view clustering

J Xu, H Tang, Y Ren, L Peng… - Proceedings of the …, 2022 - openaccess.thecvf.com
Multi-view clustering can explore common semantics from multiple views and has attracted
increasing attention. However, existing works punish multiple objectives in the same feature …

Learning with twin noisy labels for visible-infrared person re-identification

M Yang, Z Huang, P Hu, T Li, J Lv… - Proceedings of the …, 2022 - openaccess.thecvf.com
In this paper, we study an untouched problem in visible-infrared person re-identification (VI-
ReID), namely, Twin Noise Labels (TNL) which refers to as noisy annotation and …

Learning with noisy correspondence for cross-modal matching

Z Huang, G Niu, X Liu, W Ding… - Advances in Neural …, 2021 - proceedings.neurips.cc
Cross-modal matching, which aims to establish the correspondence between two different
modalities, is fundamental to a variety of tasks such as cross-modal retrieval and vision-and …

Partially view-aligned representation learning with noise-robust contrastive loss

M Yang, Y Li, Z Huang, Z Liu, P Hu… - Proceedings of the …, 2021 - openaccess.thecvf.com
In real-world applications, it is common that only a portion of data is aligned across views
due to spatial, temporal, or spatiotemporal asynchronism, thus leading to the so-called …