Exploration in deep reinforcement learning: A survey

P Ladosz, L Weng, M Kim, H Oh - Information Fusion, 2022 - Elsevier
This paper reviews exploration techniques in deep reinforcement learning. Exploration
techniques are of primary importance when solving sparse reward problems. In sparse …

How to train your robot with deep reinforcement learning: lessons we have learned

J Ibarz, J Tan, C Finn, M Kalakrishnan… - … Journal of Robotics …, 2021 - journals.sagepub.com
Deep reinforcement learning (RL) has emerged as a promising approach for autonomously
acquiring complex behaviors from low-level sensor observations. Although a large portion of …

Guiding pretraining in reinforcement learning with large language models

Y Du, O Watkins, Z Wang, C Colas… - International …, 2023 - proceedings.mlr.press
Reinforcement learning algorithms typically struggle in the absence of a dense, well-shaped
reward function. Intrinsically motivated exploration methods address this limitation by …

Video pretraining (vpt): Learning to act by watching unlabeled online videos

B Baker, I Akkaya, P Zhokov… - Advances in …, 2022 - proceedings.neurips.cc
Pretraining on noisy, internet-scale datasets has been heavily studied as a technique for
training models with broad, general capabilities for text, images, and other modalities …

Ase: Large-scale reusable adversarial skill embeddings for physically simulated characters

XB Peng, Y Guo, L Halper, S Levine… - ACM Transactions On …, 2022 - dl.acm.org
The incredible feats of athleticism demonstrated by humans are made possible in part by a
vast repertoire of general-purpose motor skills, acquired through years of practice and …

Uncertainty quantification in scientific machine learning: Methods, metrics, and comparisons

AF Psaros, X Meng, Z Zou, L Guo… - Journal of Computational …, 2023 - Elsevier
Neural networks (NNs) are currently changing the computational paradigm on how to
combine data with mathematical laws in physics and engineering in a profound way …

Deep learning for anomaly detection: A review

G Pang, C Shen, L Cao, AVD Hengel - ACM computing surveys (CSUR), 2021 - dl.acm.org
Anomaly detection, aka outlier detection or novelty detection, has been a lasting yet active
research area in various research communities for several decades. There are still some …

A survey of meta-reinforcement learning

J Beck, R Vuorio, EZ Liu, Z **ong, L Zintgraf… - arxiv preprint arxiv …, 2023 - arxiv.org
While deep reinforcement learning (RL) has fueled multiple high-profile successes in
machine learning, it is held back from more widespread adoption by its often poor data …

Conservative q-learning for offline reinforcement learning

A Kumar, A Zhou, G Tucker… - Advances in Neural …, 2020 - proceedings.neurips.cc
Effectively leveraging large, previously collected datasets in reinforcement learn-ing (RL) is
a key challenge for large-scale real-world applications. Offline RL algorithms promise to …

Cleanrl: High-quality single-file implementations of deep reinforcement learning algorithms

S Huang, RFJ Dossa, C Ye, J Braga… - Journal of Machine …, 2022 - jmlr.org
CleanRL is an open-source library that provides high-quality single-file implementations of
Deep Reinforcement Learning (DRL) algorithms. These single-file implementations are self …