Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Exploration in deep reinforcement learning: A survey
This paper reviews exploration techniques in deep reinforcement learning. Exploration
techniques are of primary importance when solving sparse reward problems. In sparse …
techniques are of primary importance when solving sparse reward problems. In sparse …
How to train your robot with deep reinforcement learning: lessons we have learned
Deep reinforcement learning (RL) has emerged as a promising approach for autonomously
acquiring complex behaviors from low-level sensor observations. Although a large portion of …
acquiring complex behaviors from low-level sensor observations. Although a large portion of …
Guiding pretraining in reinforcement learning with large language models
Reinforcement learning algorithms typically struggle in the absence of a dense, well-shaped
reward function. Intrinsically motivated exploration methods address this limitation by …
reward function. Intrinsically motivated exploration methods address this limitation by …
Video pretraining (vpt): Learning to act by watching unlabeled online videos
Pretraining on noisy, internet-scale datasets has been heavily studied as a technique for
training models with broad, general capabilities for text, images, and other modalities …
training models with broad, general capabilities for text, images, and other modalities …
Ase: Large-scale reusable adversarial skill embeddings for physically simulated characters
The incredible feats of athleticism demonstrated by humans are made possible in part by a
vast repertoire of general-purpose motor skills, acquired through years of practice and …
vast repertoire of general-purpose motor skills, acquired through years of practice and …
Uncertainty quantification in scientific machine learning: Methods, metrics, and comparisons
Neural networks (NNs) are currently changing the computational paradigm on how to
combine data with mathematical laws in physics and engineering in a profound way …
combine data with mathematical laws in physics and engineering in a profound way …
Deep learning for anomaly detection: A review
Anomaly detection, aka outlier detection or novelty detection, has been a lasting yet active
research area in various research communities for several decades. There are still some …
research area in various research communities for several decades. There are still some …
A survey of meta-reinforcement learning
While deep reinforcement learning (RL) has fueled multiple high-profile successes in
machine learning, it is held back from more widespread adoption by its often poor data …
machine learning, it is held back from more widespread adoption by its often poor data …
Conservative q-learning for offline reinforcement learning
Effectively leveraging large, previously collected datasets in reinforcement learn-ing (RL) is
a key challenge for large-scale real-world applications. Offline RL algorithms promise to …
a key challenge for large-scale real-world applications. Offline RL algorithms promise to …
Cleanrl: High-quality single-file implementations of deep reinforcement learning algorithms
CleanRL is an open-source library that provides high-quality single-file implementations of
Deep Reinforcement Learning (DRL) algorithms. These single-file implementations are self …
Deep Reinforcement Learning (DRL) algorithms. These single-file implementations are self …