The evolution of distributed systems for graph neural networks and their origin in graph processing and deep learning: A survey
Graph neural networks (GNNs) are an emerging research field. This specialized deep
neural network architecture is capable of processing graph structured data and bridges the …
neural network architecture is capable of processing graph structured data and bridges the …
A survey of graph neural networks for recommender systems: Challenges, methods, and directions
Recommender system is one of the most important information services on today's Internet.
Recently, graph neural networks have become the new state-of-the-art approach to …
Recently, graph neural networks have become the new state-of-the-art approach to …
Graph neural networks: foundation, frontiers and applications
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …
recent years. Graph neural networks, also known as deep learning on graphs, graph …
Neural architecture search: Insights from 1000 papers
In the past decade, advances in deep learning have resulted in breakthroughs in a variety of
areas, including computer vision, natural language understanding, speech recognition, and …
areas, including computer vision, natural language understanding, speech recognition, and …
Structure-free graph condensation: From large-scale graphs to condensed graph-free data
Graph condensation, which reduces the size of a large-scale graph by synthesizing a small-
scale condensed graph as its substitution, has immediate benefits for various graph learning …
scale condensed graph as its substitution, has immediate benefits for various graph learning …
Trustworthy graph neural networks: Aspects, methods and trends
Graph neural networks (GNNs) have emerged as a series of competent graph learning
methods for diverse real-world scenarios, ranging from daily applications like …
methods for diverse real-world scenarios, ranging from daily applications like …
Reinforced, incremental and cross-lingual event detection from social messages
Detecting hot social events (eg, political scandal, momentous meetings, natural hazards,
etc.) from social messages is crucial as it highlights significant happenings to help people …
etc.) from social messages is crucial as it highlights significant happenings to help people …
Graph neural networks: Taxonomy, advances, and trends
Graph neural networks provide a powerful toolkit for embedding real-world graphs into low-
dimensional spaces according to specific tasks. Up to now, there have been several surveys …
dimensional spaces according to specific tasks. Up to now, there have been several surveys …
Graph condensation: A survey
The rapid growth of graph data poses significant challenges in storage, transmission, and
particularly the training of graph neural networks (GNNs). To address these challenges …
particularly the training of graph neural networks (GNNs). To address these challenges …
Unsupervised graph neural architecture search with disentangled self-supervision
The existing graph neural architecture search (GNAS) methods heavily rely on supervised
labels during the search process, failing to handle ubiquitous scenarios where supervisions …
labels during the search process, failing to handle ubiquitous scenarios where supervisions …