[HTML][HTML] The variational quantum eigensolver: a review of methods and best practices

J Tilly, H Chen, S Cao, D Picozzi, K Setia, Y Li, E Grant… - Physics Reports, 2022 - Elsevier
The variational quantum eigensolver (or VQE), first developed by Peruzzo et al.(2014), has
received significant attention from the research community in recent years. It uses the …

A review on quantum approximate optimization algorithm and its variants

K Blekos, D Brand, A Ceschini, CH Chou, RH Li… - Physics Reports, 2024 - Elsevier
Abstract The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising
variational quantum algorithm that aims to solve combinatorial optimization problems that …

Evidence for the utility of quantum computing before fault tolerance

Y Kim, A Eddins, S Anand, KX Wei, E Van Den Berg… - Nature, 2023 - nature.com
Quantum computing promises to offer substantial speed-ups over its classical counterpart for
certain problems. However, the greatest impediment to realizing its full potential is noise that …

Generalization in quantum machine learning from few training data

MC Caro, HY Huang, M Cerezo, K Sharma… - Nature …, 2022 - nature.com
Modern quantum machine learning (QML) methods involve variationally optimizing a
parameterized quantum circuit on a training data set, and subsequently making predictions …

Noise-induced barren plateaus in variational quantum algorithms

S Wang, E Fontana, M Cerezo, K Sharma… - Nature …, 2021 - nature.com
Abstract Variational Quantum Algorithms (VQAs) may be a path to quantum advantage on
Noisy Intermediate-Scale Quantum (NISQ) computers. A natural question is whether noise …

A Lie algebraic theory of barren plateaus for deep parameterized quantum circuits

M Ragone, BN Bakalov, F Sauvage, AF Kemper… - Nature …, 2024 - nature.com
Variational quantum computing schemes train a loss function by sending an initial state
through a parametrized quantum circuit, and measuring the expectation value of some …

Absence of barren plateaus in quantum convolutional neural networks

A Pesah, M Cerezo, S Wang, T Volkoff, AT Sornborger… - Physical Review X, 2021 - APS
Quantum neural networks (QNNs) have generated excitement around the possibility of
efficiently analyzing quantum data. But this excitement has been tempered by the existence …

Exploiting symmetry in variational quantum machine learning

JJ Meyer, M Mularski, E Gil-Fuster, AA Mele, F Arzani… - PRX Quantum, 2023 - APS
Variational quantum machine learning is an extensively studied application of near-term
quantum computers. The success of variational quantum learning models crucially depends …

A unified theory of barren plateaus for deep parametrized quantum circuits

MVS Cerezo de la Roca, M Ragone, B Bakalov… - Nature …, 2024 - osti.gov
AFV CoverSheet Page 1 LA-UR-23-30483 Accepted Manuscript A Lie algebraic theory of
barren plateaus for deep parameterized quantum circuits Cerezo de la Roca, Marco Vinicio …

Quantum information processing with superconducting circuits: a review

G Wendin - Reports on Progress in Physics, 2017 - iopscience.iop.org
During the last ten years, superconducting circuits have passed from being interesting
physical devices to becoming contenders for near-future useful and scalable quantum …