[HTML][HTML] Data augmentation: A comprehensive survey of modern approaches

A Mumuni, F Mumuni - Array, 2022 - Elsevier
To ensure good performance, modern machine learning models typically require large
amounts of quality annotated data. Meanwhile, the data collection and annotation processes …

A comprehensive survey on design and application of autoencoder in deep learning

P Li, Y Pei, J Li - Applied Soft Computing, 2023 - Elsevier
Autoencoder is an unsupervised learning model, which can automatically learn data
features from a large number of samples and can act as a dimensionality reduction method …

Uncertainty quantification in scientific machine learning: Methods, metrics, and comparisons

AF Psaros, X Meng, Z Zou, L Guo… - Journal of Computational …, 2023 - Elsevier
Neural networks (NNs) are currently changing the computational paradigm on how to
combine data with mathematical laws in physics and engineering in a profound way …

[HTML][HTML] A Python library for probabilistic analysis of single-cell omics data

A Gayoso, R Lopez, G **ng, P Boyeau… - Nature …, 2022 - nature.com
To the Editor—Methods for analyzing single-cell data 1, 2, 3, 4 perform a core set of
computational tasks. These tasks include dimensionality reduction, cell clustering, cell-state …

Self-supervised learning of pretext-invariant representations

I Misra, L Maaten - … of the IEEE/CVF conference on …, 2020 - openaccess.thecvf.com
The goal of self-supervised learning from images is to construct image representations that
are semantically meaningful via pretext tasks that do not require semantic annotations. Many …

A review on generative adversarial networks: Algorithms, theory, and applications

J Gui, Z Sun, Y Wen, D Tao, J Ye - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Generative adversarial networks (GANs) have recently become a hot research topic;
however, they have been studied since 2014, and a large number of algorithms have been …

Self-supervised pretraining of 3d features on any point-cloud

Z Zhang, R Girdhar, A Joulin… - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
Pretraining on large labeled datasets is a prerequisite to achieve good performance in many
computer vision tasks like image recognition, video understanding etc. However, pretraining …

Machine learning and deep learning in smart manufacturing: The smart grid paradigm

T Kotsiopoulos, P Sarigiannidis, D Ioannidis… - Computer Science …, 2021 - Elsevier
Industry 4.0 is the new industrial revolution. By connecting every machine and activity
through network sensors to the Internet, a huge amount of data is generated. Machine …

[HTML][HTML] A state-of-the-art survey on deep learning theory and architectures

MZ Alom, TM Taha, C Yakopcic, S Westberg, P Sidike… - electronics, 2019 - mdpi.com
In recent years, deep learning has garnered tremendous success in a variety of application
domains. This new field of machine learning has been growing rapidly and has been …

Generative adversarial networks (GANs) challenges, solutions, and future directions

D Saxena, J Cao - ACM Computing Surveys (CSUR), 2021 - dl.acm.org
Generative Adversarial Networks (GANs) is a novel class of deep generative models that
has recently gained significant attention. GANs learn complex and high-dimensional …