Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Convolutional neural networks in medical image understanding: a survey
Imaging techniques are used to capture anomalies of the human body. The captured images
must be understood for diagnosis, prognosis and treatment planning of the anomalies …
must be understood for diagnosis, prognosis and treatment planning of the anomalies …
A review on brain tumor segmentation of MRI images
The process of segmenting tumor from MRI image of a brain is one of the highly focused
areas in the community of medical science as MRI is noninvasive imaging. This paper …
areas in the community of medical science as MRI is noninvasive imaging. This paper …
A novel approach for brain tumour detection using deep learning based technique
Identifying the tumour's extent is a major challenge in planning treatment for brain tumours
and correctly measuring their size. Magnetic resonance imaging (MRI) has emerged as a …
and correctly measuring their size. Magnetic resonance imaging (MRI) has emerged as a …
Brain tumor detection using fusion of hand crafted and deep learning features
The perilous disease in the worldwide now a days is brain tumor. Tumor affects the brain by
damaging healthy tissues or intensifying intra cranial pressure. Hence, rapid growth in tumor …
damaging healthy tissues or intensifying intra cranial pressure. Hence, rapid growth in tumor …
Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features
Gliomas belong to a group of central nervous system tumors, and consist of various sub-
regions. Gold standard labeling of these sub-regions in radiographic imaging is essential for …
regions. Gold standard labeling of these sub-regions in radiographic imaging is essential for …
[HTML][HTML] Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
We propose a dual pathway, 11-layers deep, three-dimensional Convolutional Neural
Network for the challenging task of brain lesion segmentation. The devised architecture is …
Network for the challenging task of brain lesion segmentation. The devised architecture is …
A deep learning model integrating FCNNs and CRFs for brain tumor segmentation
Accurate and reliable brain tumor segmentation is a critical component in cancer diagnosis,
treatment planning, and treatment outcome evaluation. Build upon successful deep learning …
treatment planning, and treatment outcome evaluation. Build upon successful deep learning …
Deep learning for brain tumor segmentation: a survey of state-of-the-art
Quantitative analysis of the brain tumors provides valuable information for understanding the
tumor characteristics and treatment planning better. The accurate segmentation of lesions …
tumor characteristics and treatment planning better. The accurate segmentation of lesions …
CNN-based segmentation of medical imaging data
B Kayalibay, G Jensen, P van der Smagt - ar** of gliomas
Purpose: The new classification announced by the World Health Organization in 2016
recognized five molecular subtypes of diffuse gliomas based on isocitrate dehydrogenase …
recognized five molecular subtypes of diffuse gliomas based on isocitrate dehydrogenase …