A comprehensive review of binary neural network

C Yuan, SS Agaian - Artificial Intelligence Review, 2023 - Springer
Deep learning (DL) has recently changed the development of intelligent systems and is
widely adopted in many real-life applications. Despite their various benefits and potentials …

A systematic literature review on binary neural networks

R Sayed, H Azmi, H Shawkey, AH Khalil… - IEEE Access, 2023 - ieeexplore.ieee.org
This paper presents an extensive literature review on Binary Neural Network (BNN). BNN
utilizes binary weights and activation function parameters to substitute the full-precision …

A survey of quantization methods for efficient neural network inference

A Gholami, S Kim, Z Dong, Z Yao… - Low-Power Computer …, 2022 - taylorfrancis.com
This chapter provides approaches to the problem of quantizing the numerical values in deep
Neural Network computations, covering the advantages/disadvantages of current methods …

Intraq: Learning synthetic images with intra-class heterogeneity for zero-shot network quantization

Y Zhong, M Lin, G Nan, J Liu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Learning to synthesize data has emerged as a promising direction in zero-shot quantization
(ZSQ), which represents neural networks by low-bit integer without accessing any of the real …

Bibench: Benchmarking and analyzing network binarization

H Qin, M Zhang, Y Ding, A Li, Z Cai… - International …, 2023 - proceedings.mlr.press
Network binarization emerges as one of the most promising compression approaches
offering extraordinary computation and memory savings by minimizing the bit-width …

Recu: Reviving the dead weights in binary neural networks

Z Xu, M Lin, J Liu, J Chen, L Shao… - Proceedings of the …, 2021 - openaccess.thecvf.com
Binary neural networks (BNNs) have received increasing attention due to their superior
reductions of computation and memory. Most existing works focus on either lessening the …

Bivit: Extremely compressed binary vision transformers

Y He, Z Lou, L Zhang, J Liu, W Wu… - Proceedings of the …, 2023 - openaccess.thecvf.com
Abstract Model binarization can significantly compress model size, reduce energy
consumption, and accelerate inference through efficient bit-wise operations. Although …

Lightweight pixel difference networks for efficient visual representation learning

Z Su, J Zhang, L Wang, H Zhang, Z Liu… - … on Pattern Analysis …, 2023 - ieeexplore.ieee.org
Recently, there have been tremendous efforts in develo** lightweight Deep Neural
Networks (DNNs) with satisfactory accuracy, which can enable the ubiquitous deployment of …

[HTML][HTML] Advances in the neural network quantization: A comprehensive review

L Wei, Z Ma, C Yang, Q Yao - Applied Sciences, 2024 - mdpi.com
Artificial intelligence technologies based on deep convolutional neural networks and large
language models have made significant breakthroughs in many tasks, such as image …

A comprehensive survey on model quantization for deep neural networks in image classification

B Rokh, A Azarpeyvand, A Khanteymoori - ACM Transactions on …, 2023 - dl.acm.org
Recent advancements in machine learning achieved by Deep Neural Networks (DNNs)
have been significant. While demonstrating high accuracy, DNNs are associated with a …