Recent advances in natural language processing via large pre-trained language models: A survey

B Min, H Ross, E Sulem, APB Veyseh… - ACM Computing …, 2023 - dl.acm.org
Large, pre-trained language models (PLMs) such as BERT and GPT have drastically
changed the Natural Language Processing (NLP) field. For numerous NLP tasks …

A comprehensive survey on automatic knowledge graph construction

L Zhong, J Wu, Q Li, H Peng, X Wu - ACM Computing Surveys, 2023 - dl.acm.org
Automatic knowledge graph construction aims at manufacturing structured human
knowledge. To this end, much effort has historically been spent extracting informative fact …

Unifying large language models and knowledge graphs: A roadmap

S Pan, L Luo, Y Wang, C Chen… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Large language models (LLMs), such as ChatGPT and GPT4, are making new waves in the
field of natural language processing and artificial intelligence, due to their emergent ability …

Openagi: When llm meets domain experts

Y Ge, W Hua, K Mei, J Tan, S Xu… - Advances in Neural …, 2023 - proceedings.neurips.cc
Human Intelligence (HI) excels at combining basic skills to solve complex tasks. This
capability is vital for Artificial Intelligence (AI) and should be embedded in comprehensive AI …

Large language models struggle to learn long-tail knowledge

N Kandpal, H Deng, A Roberts… - International …, 2023 - proceedings.mlr.press
The Internet contains a wealth of knowledge—from the birthdays of historical figures to
tutorials on how to code—all of which may be learned by language models. However, while …

Atlas: Few-shot learning with retrieval augmented language models

G Izacard, P Lewis, M Lomeli, L Hosseini… - Journal of Machine …, 2023 - jmlr.org
Large language models have shown impressive few-shot results on a wide range of tasks.
However, when knowledge is key for such results, as is the case for tasks such as question …

Large language models as zero-shot conversational recommenders

Z He, Z **e, R Jha, H Steck, D Liang, Y Feng… - Proceedings of the …, 2023 - dl.acm.org
In this paper, we present empirical studies on conversational recommendation tasks using
representative large language models in a zero-shot setting with three primary …

Generate rather than retrieve: Large language models are strong context generators

W Yu, D Iter, S Wang, Y Xu, M Ju, S Sanyal… - arxiv preprint arxiv …, 2022 - arxiv.org
Knowledge-intensive tasks, such as open-domain question answering (QA), require access
to a large amount of world or domain knowledge. A common approach for knowledge …

Dense text retrieval based on pretrained language models: A survey

WX Zhao, J Liu, R Ren, JR Wen - ACM Transactions on Information …, 2024 - dl.acm.org
Text retrieval is a long-standing research topic on information seeking, where a system is
required to return relevant information resources to user's queries in natural language. From …

Recommender systems with generative retrieval

S Rajput, N Mehta, A Singh… - Advances in …, 2023 - proceedings.neurips.cc
Modern recommender systems perform large-scale retrieval by embedding queries and item
candidates in the same unified space, followed by approximate nearest neighbor search to …