Graph convolutional networks: a comprehensive review
Graphs naturally appear in numerous application domains, ranging from social analysis,
bioinformatics to computer vision. The unique capability of graphs enables capturing the …
bioinformatics to computer vision. The unique capability of graphs enables capturing the …
[HTML][HTML] Graph neural networks: A review of methods and applications
Lots of learning tasks require dealing with graph data which contains rich relation
information among elements. Modeling physics systems, learning molecular fingerprints …
information among elements. Modeling physics systems, learning molecular fingerprints …
Recipe for a general, powerful, scalable graph transformer
We propose a recipe on how to build a general, powerful, scalable (GPS) graph Transformer
with linear complexity and state-of-the-art results on a diverse set of benchmarks. Graph …
with linear complexity and state-of-the-art results on a diverse set of benchmarks. Graph …
Temporal graph benchmark for machine learning on temporal graphs
Abstract We present the Temporal Graph Benchmark (TGB), a collection of challenging and
diverse benchmark datasets for realistic, reproducible, and robust evaluation of machine …
diverse benchmark datasets for realistic, reproducible, and robust evaluation of machine …
How powerful are spectral graph neural networks
Abstract Spectral Graph Neural Network is a kind of Graph Neural Network (GNN) based on
graph signal filters. Some models able to learn arbitrary spectral filters have emerged …
graph signal filters. Some models able to learn arbitrary spectral filters have emerged …
Graph neural networks: foundation, frontiers and applications
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …
recent years. Graph neural networks, also known as deep learning on graphs, graph …
Representational strengths and limitations of transformers
Attention layers, as commonly used in transformers, form the backbone of modern deep
learning, yet there is no mathematical description of their benefits and deficiencies as …
learning, yet there is no mathematical description of their benefits and deficiencies as …
Combinatorial optimization and reasoning with graph neural networks
Combinatorial optimization is a well-established area in operations research and computer
science. Until recently, its methods have focused on solving problem instances in isolation …
science. Until recently, its methods have focused on solving problem instances in isolation …
Weisfeiler and lehman go cellular: Cw networks
Abstract Graph Neural Networks (GNNs) are limited in their expressive power, struggle with
long-range interactions and lack a principled way to model higher-order structures. These …
long-range interactions and lack a principled way to model higher-order structures. These …
Discovering invariant rationales for graph neural networks
Intrinsic interpretability of graph neural networks (GNNs) is to find a small subset of the input
graph's features--rationale--which guides the model prediction. Unfortunately, the leading …
graph's features--rationale--which guides the model prediction. Unfortunately, the leading …