A review on generative adversarial networks: Algorithms, theory, and applications

J Gui, Z Sun, Y Wen, D Tao, J Ye - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Generative adversarial networks (GANs) have recently become a hot research topic;
however, they have been studied since 2014, and a large number of algorithms have been …

A comprehensive review on fake news detection with deep learning

MF Mridha, AJ Keya, MA Hamid, MM Monowar… - IEEE …, 2021 - ieeexplore.ieee.org
A protuberant issue of the present time is that, organizations from different domains are
struggling to obtain effective solutions for detecting online-based fake news. It is quite …

Bias and debias in recommender system: A survey and future directions

J Chen, H Dong, X Wang, F Feng, M Wang… - ACM Transactions on …, 2023 - dl.acm.org
While recent years have witnessed a rapid growth of research papers on recommender
system (RS), most of the papers focus on inventing machine learning models to better fit …

Diffusion recommender model

W Wang, Y Xu, F Feng, X Lin, X He… - Proceedings of the 46th …, 2023 - dl.acm.org
Generative models such as Generative Adversarial Networks (GANs) and Variational Auto-
Encoders (VAEs) are widely utilized to model the generative process of user interactions …

Neural graph collaborative filtering

X Wang, X He, M Wang, F Feng, TS Chua - Proceedings of the 42nd …, 2019 - dl.acm.org
Learning vector representations (aka. embeddings) of users and items lies at the core of
modern recommender systems. Ranging from early matrix factorization to recently emerged …

Artificial intelligence in recommender systems

Q Zhang, J Lu, Y ** - Complex & Intelligent Systems, 2021 - Springer
Recommender systems provide personalized service support to users by learning their
previous behaviors and predicting their current preferences for particular products. Artificial …

A review of modern recommender systems using generative models (gen-recsys)

Y Deldjoo, Z He, J McAuley, A Korikov… - Proceedings of the 30th …, 2024 - dl.acm.org
Traditional recommender systems typically use user-item rating histories as their main data
source. However, deep generative models now have the capability to model and sample …

A survey on generative adversarial networks: Variants, applications, and training

A Jabbar, X Li, B Omar - ACM Computing Surveys (CSUR), 2021 - dl.acm.org
The Generative Models have gained considerable attention in unsupervised learning via a
new and practical framework called Generative Adversarial Networks (GAN) due to their …

Mixgcf: An improved training method for graph neural network-based recommender systems

T Huang, Y Dong, M Ding, Z Yang, W Feng… - Proceedings of the 27th …, 2021 - dl.acm.org
Graph neural networks (GNNs) have recently emerged as state-of-the-art collaborative
filtering (CF) solution. A fundamental challenge of CF is to distill negative signals from the …

Deep learning based recommender system: A survey and new perspectives

S Zhang, L Yao, A Sun, Y Tay - ACM computing surveys (CSUR), 2019 - dl.acm.org
With the growing volume of online information, recommender systems have been an
effective strategy to overcome information overload. The utility of recommender systems …