Transforming medical imaging with Transformers? A comparative review of key properties, current progresses, and future perspectives

J Li, J Chen, Y Tang, C Wang, BA Landman… - Medical image …, 2023 - Elsevier
Transformer, one of the latest technological advances of deep learning, has gained
prevalence in natural language processing or computer vision. Since medical imaging bear …

Data drift in medical machine learning: implications and potential remedies

B Sahiner, W Chen, RK Samala… - The British Journal of …, 2023 - academic.oup.com
Data drift refers to differences between the data used in training a machine learning (ML)
model and that applied to the model in real-world operation. Medical ML systems can be …

Deep learning-aided decision support for diagnosis of skin disease across skin tones

M Groh, O Badri, R Daneshjou, A Koochek, C Harris… - Nature Medicine, 2024 - nature.com
Although advances in deep learning systems for image-based medical diagnosis
demonstrate their potential to augment clinical decision-making, the effectiveness of …

Explainable artificial intelligence and cardiac imaging: toward more interpretable models

A Salih, I Boscolo Galazzo, P Gkontra… - Circulation …, 2023 - Am Heart Assoc
Artificial intelligence applications have shown success in different medical and health care
domains, and cardiac imaging is no exception. However, some machine learning models …

Explainable artificial intelligence: importance, use domains, stages, output shapes, and challenges

N Ullah, JA Khan, I De Falco, G Sannino - ACM Computing Surveys, 2024 - dl.acm.org
There is an urgent need in many application areas for eXplainable ArtificiaI Intelligence
(XAI) approaches to boost people's confidence and trust in Artificial Intelligence methods …

A review of evaluation approaches for explainable AI with applications in cardiology

AM Salih, IB Galazzo, P Gkontra, E Rauseo… - Artificial Intelligence …, 2024 - Springer
Explainable artificial intelligence (XAI) elucidates the decision-making process of complex AI
models and is important in building trust in model predictions. XAI explanations themselves …

Trustworthy multi-phase liver tumor segmentation via evidence-based uncertainty

C Hu, T **a, Y Cui, Q Zou, Y Wang, W **ao, S Ju… - … Applications of Artificial …, 2024 - Elsevier
Multi-phase liver contrast-enhanced computed tomography (CECT) images convey the
complementary multi-phase information for liver tumor segmentation (LiTS), which are …

[HTML][HTML] Unveiling the black box: a systematic review of Explainable Artificial Intelligence in medical image analysis

D Muhammad, M Bendechache - Computational and structural …, 2024 - Elsevier
This systematic literature review examines state-of-the-art Explainable Artificial Intelligence
(XAI) methods applied to medical image analysis, discussing current challenges and future …

A survey of ASER members on artificial intelligence in emergency radiology: trends, perceptions, and expectations

A Agrawal, GD Khatri, B Khurana, AD Sodickson… - Emergency …, 2023 - Springer
Purpose There is a growing body of diagnostic performance studies for emergency
radiology-related artificial intelligence/machine learning (AI/ML) tools; however, little is …

A comprehensive survey of foundation models in medicine

W Khan, S Leem, KB See, JK Wong… - IEEE Reviews in …, 2025 - ieeexplore.ieee.org
Foundation models (FMs) are large-scale deeplearning models that are developed using
large datasets and self-supervised learning methods. These models serve as a base for …