Four generations of high-dimensional neural network potentials
J Behler - Chemical Reviews, 2021 - ACS Publications
Since their introduction about 25 years ago, machine learning (ML) potentials have become
an important tool in the field of atomistic simulations. After the initial decade, in which neural …
an important tool in the field of atomistic simulations. After the initial decade, in which neural …
Combining machine learning and computational chemistry for predictive insights into chemical systems
Machine learning models are poised to make a transformative impact on chemical sciences
by dramatically accelerating computational algorithms and amplifying insights available from …
by dramatically accelerating computational algorithms and amplifying insights available from …
Machine learning force fields
In recent years, the use of machine learning (ML) in computational chemistry has enabled
numerous advances previously out of reach due to the computational complexity of …
numerous advances previously out of reach due to the computational complexity of …
Accurate global machine learning force fields for molecules with hundreds of atoms
Global machine learning force fields, with the capacity to capture collective interactions in
molecular systems, now scale up to a few dozen atoms due to considerable growth of model …
molecular systems, now scale up to a few dozen atoms due to considerable growth of model …
[HTML][HTML] PSI4 1.4: Open-source software for high-throughput quantum chemistry
PSI4 is a free and open-source ab initio electronic structure program providing
implementations of Hartree–Fock, density functional theory, many-body perturbation theory …
implementations of Hartree–Fock, density functional theory, many-body perturbation theory …
Machine learning for molecular simulation
Machine learning (ML) is transforming all areas of science. The complex and time-
consuming calculations in molecular simulations are particularly suitable for an ML …
consuming calculations in molecular simulations are particularly suitable for an ML …
Quantum chemical accuracy from density functional approximations via machine learning
Kohn-Sham density functional theory (DFT) is a standard tool in most branches of chemistry,
but accuracies for many molecules are limited to 2-3 kcal⋅ mol− 1 with presently-available …
but accuracies for many molecules are limited to 2-3 kcal⋅ mol− 1 with presently-available …
Deep potentials for materials science
To fill the gap between accurate (and expensive) ab initio calculations and efficient atomistic
simulations based on empirical interatomic potentials, a new class of descriptions of atomic …
simulations based on empirical interatomic potentials, a new class of descriptions of atomic …
Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation
Combustion is a complex chemical system which involves thousands of chemical reactions
and generates hundreds of molecular species and radicals during the process. In this work …
and generates hundreds of molecular species and radicals during the process. In this work …
Choosing the right molecular machine learning potential
Quantum-chemistry simulations based on potential energy surfaces of molecules provide
invaluable insight into the physicochemical processes at the atomistic level and yield such …
invaluable insight into the physicochemical processes at the atomistic level and yield such …