[HTML][HTML] A comprehensive review on ensemble deep learning: Opportunities and challenges

A Mohammed, R Kora - Journal of King Saud University-Computer and …, 2023 - Elsevier
In machine learning, two approaches outperform traditional algorithms: ensemble learning
and deep learning. The former refers to methods that integrate multiple base models in the …

[HTML][HTML] From concept drift to model degradation: An overview on performance-aware drift detectors

F Bayram, BS Ahmed, A Kassler - Knowledge-Based Systems, 2022 - Elsevier
The dynamicity of real-world systems poses a significant challenge to deployed predictive
machine learning (ML) models. Changes in the system on which the ML model has been …

A survey of ensemble learning: Concepts, algorithms, applications, and prospects

ID Mienye, Y Sun - IEEE Access, 2022 - ieeexplore.ieee.org
Ensemble learning techniques have achieved state-of-the-art performance in diverse
machine learning applications by combining the predictions from two or more base models …

A survey on intelligent Internet of Things: Applications, security, privacy, and future directions

O Aouedi, TH Vu, A Sacco, DC Nguyen… - … surveys & tutorials, 2024 - ieeexplore.ieee.org
The rapid advances in the Internet of Things (IoT) have promoted a revolution in
communication technology and offered various customer services. Artificial intelligence (AI) …

Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey

S Bhattacharya, PKR Maddikunta, QV Pham… - Sustainable cities and …, 2021 - Elsevier
Since December 2019, the coronavirus disease (COVID-19) outbreak has caused many
death cases and affected all sectors of human life. With gradual progression of time, COVID …

A practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and …

S González, S García, J Del Ser, L Rokach, F Herrera - Information Fusion, 2020 - Elsevier
Ensembles, especially ensembles of decision trees, are one of the most popular and
successful techniques in machine learning. Recently, the number of ensemble-based …

Tackling climate change with machine learning

D Rolnick, PL Donti, LH Kaack, K Kochanski… - ACM Computing …, 2022 - dl.acm.org
Climate change is one of the greatest challenges facing humanity, and we, as machine
learning (ML) experts, may wonder how we can help. Here we describe how ML can be a …

Learning under concept drift: A review

J Lu, A Liu, F Dong, F Gu, J Gama… - IEEE transactions on …, 2018 - ieeexplore.ieee.org
Concept drift describes unforeseeable changes in the underlying distribution of streaming
data overtime. Concept drift research involves the development of methodologies and …

[HTML][HTML] Concept drift detection in data stream mining: A literature review

S Agrahari, AK Singh - Journal of King Saud University-Computer and …, 2022 - Elsevier
In recent years, the availability of time series streaming information has been growing
enormously. Learning from real-time data has been receiving increasingly more attention …

SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary

A Fernández, S Garcia, F Herrera, NV Chawla - Journal of artificial …, 2018 - jair.org
The Synthetic Minority Oversampling Technique (SMOTE) preprocessing algorithm is
considered" de facto" standard in the framework of learning from imbalanced data. This is …