Fast Gaussian process based gradient matching for parameter identification in systems of nonlinear ODEs

P Wenk, A Gotovos, S Bauer… - The 22nd …, 2019 - proceedings.mlr.press
Parameter identification and comparison of dynamical systems is a challenging task in many
fields. Bayesian approaches based on Gaussian process regression over time-series data …

Scalable variational inference for dynamical systems

NS Gorbach, S Bauer… - Advances in neural …, 2017 - proceedings.neurips.cc
Gradient matching is a promising tool for learning parameters and state dynamics of
ordinary differential equations. It is a grid free inference approach, which, for fully observable …

Mean-Field Variational Inference for Gradient Matching with Gaussian Processes

NS Gorbach, S Bauer, JM Buhmann - arxiv preprint arxiv:1610.06949, 2016 - arxiv.org
Gradient matching with Gaussian processes is a promising tool for learning parameters of
ordinary differential equations (ODE's). The essence of gradient matching is to model the …

Validation and Inference of Structural Connectivity and Neural Dynamics with MRI data

NS Gorbach - 2018 - research-collection.ethz.ch
Diffusion-and functional MRI are promising avenues for revealing functional organization in
the living human brain since they provide noninvasive measurements pertaining to the …

[PDF][PDF] Scalable Variational Inference for Dynamical Systems

S Bauer, E CH, NS Gorbach, JM Buhmann - stat, 2017 - researchgate.net
Gradient matching is a promising tool for learning parameters and state dynamics of
ordinary differential equations. It is a grid free inference approach which for fully observable …

[CITAT][C] Inferring Non-linear State Dynamics using Gaussian Processes

NS Gorbach, S Bauer… - NIPS Time Series …, 2016 - research-collection.ethz.ch
Inferring Non-linear State Dynamics using Gaussian Processes - Research Collection
Header Upper Right Menu Log in de jump to https://www.ethz.ch Research Collection …