[HTML][HTML] Deep learning based synthesis of MRI, CT and PET: Review and analysis

S Dayarathna, KT Islam, S Uribe, G Yang, M Hayat… - Medical image …, 2024 - Elsevier
Medical image synthesis represents a critical area of research in clinical decision-making,
aiming to overcome the challenges associated with acquiring multiple image modalities for …

A review on medical imaging synthesis using deep learning and its clinical applications

T Wang, Y Lei, Y Fu, JF Wynne… - Journal of applied …, 2021 - Wiley Online Library
This paper reviewed the deep learning‐based studies for medical imaging synthesis and its
clinical application. Specifically, we summarized the recent developments of deep learning …

[HTML][HTML] The promise of artificial intelligence and deep learning in PET and SPECT imaging

H Arabi, A AkhavanAllaf, A Sanaat, I Shiri, H Zaidi - Physica Medica, 2021 - Elsevier
This review sets out to discuss the foremost applications of artificial intelligence (AI),
particularly deep learning (DL) algorithms, in single-photon emission computed tomography …

Applications of artificial intelligence and deep learning in molecular imaging and radiotherapy

H Arabi, H Zaidi - European Journal of Hybrid Imaging, 2020 - Springer
This brief review summarizes the major applications of artificial intelligence (AI), in particular
deep learning approaches, in molecular imaging and radiation therapy research. To this …

Application of artificial intelligence in nuclear medicine and molecular imaging: a review of current status and future perspectives for clinical translation

D Visvikis, P Lambin, K Beuschau Mauridsen… - European journal of …, 2022 - Springer
Artificial intelligence (AI) will change the face of nuclear medicine and molecular imaging as
it will in everyday life. In this review, we focus on the potential applications of AI in the field …

Automated MRI-based deep learning model for detection of Alzheimer's disease process

W Feng, NV Halm-Lutterodt, H Tang… - … Journal of Neural …, 2020 - World Scientific
In the context of neuro-pathological disorders, neuroimaging has been widely accepted as a
clinical tool for diagnosing patients with Alzheimer's disease (AD) and mild cognitive …

Artificial intelligence, machine (deep) learning and radio (geno) mics: definitions and nuclear medicine imaging applications

D Visvikis, C Cheze Le Rest, V Jaouen… - European journal of …, 2019 - Springer
Techniques from the field of artificial intelligence, and more specifically machine (deep)
learning methods, have been core components of most recent developments in the field of …

Artificial intelligence in nuclear medicine

F Nensa, A Demircioglu… - Journal of Nuclear …, 2019 - Soc Nuclear Med
Despite the great media attention for artificial intelligence (AI), for many health care
professionals the term and the functioning of AI remain a “black box,” leading to exaggerated …

Machine learning in quantitative PET: A review of attenuation correction and low-count image reconstruction methods

T Wang, Y Lei, Y Fu, WJ Curran, T Liu, JA Nye, X Yang - Physica Medica, 2020 - Elsevier
The rapid expansion of machine learning is offering a new wave of opportunities for nuclear
medicine. This paper reviews applications of machine learning for the study of attenuation …

A review of deep-learning-based approaches for attenuation correction in positron emission tomography

JS Lee - IEEE Transactions on Radiation and Plasma Medical …, 2020 - ieeexplore.ieee.org
Attenuation correction (AC) is essential for the generation of artifact-free and quantitatively
accurate positron emission tomography (PET) images. PET AC based on computed …