Gaussian process regression for materials and molecules

VL Deringer, AP Bartók, N Bernstein… - Chemical …, 2021 - ACS Publications
We provide an introduction to Gaussian process regression (GPR) machine-learning
methods in computational materials science and chemistry. The focus of the present review …

Combining machine learning and computational chemistry for predictive insights into chemical systems

JA Keith, V Vassilev-Galindo, B Cheng… - Chemical …, 2021 - ACS Publications
Machine learning models are poised to make a transformative impact on chemical sciences
by dramatically accelerating computational algorithms and amplifying insights available from …

MACE: Higher order equivariant message passing neural networks for fast and accurate force fields

I Batatia, DP Kovacs, G Simm… - Advances in Neural …, 2022 - proceedings.neurips.cc
Creating fast and accurate force fields is a long-standing challenge in computational
chemistry and materials science. Recently, Equivariant Message Passing Neural Networks …

Physics-inspired structural representations for molecules and materials

F Musil, A Grisafi, AP Bartók, C Ortner… - Chemical …, 2021 - ACS Publications
The first step in the construction of a regression model or a data-driven analysis, aiming to
predict or elucidate the relationship between the atomic-scale structure of matter and its …

Graph networks as a universal machine learning framework for molecules and crystals

C Chen, W Ye, Y Zuo, C Zheng, SP Ong - Chemistry of Materials, 2019 - ACS Publications
Graph networks are a new machine learning (ML) paradigm that supports both relational
reasoning and combinatorial generalization. Here, we develop universal MatErials Graph …

Origins of structural and electronic transitions in disordered silicon

VL Deringer, N Bernstein, G Csányi, C Ben Mahmoud… - Nature, 2021 - nature.com
Structurally disordered materials pose fundamental questions,,–, including how different
disordered phases ('polyamorphs') can coexist and transform from one phase to another …

Quantum chemistry in the age of machine learning

PO Dral - The journal of physical chemistry letters, 2020 - ACS Publications
As the quantum chemistry (QC) community embraces machine learning (ML), the number of
new methods and applications based on the combination of QC and ML is surging. In this …

Exploring chemical compound space with quantum-based machine learning

OA von Lilienfeld, KR Müller… - Nature Reviews Chemistry, 2020 - nature.com
Rational design of compounds with specific properties requires understanding and fast
evaluation of molecular properties throughout chemical compound space—the huge set of …

On-the-fly machine learning force field generation: Application to melting points

R **nouchi, F Karsai, G Kresse - Physical Review B, 2019 - APS
An efficient and robust on-the-fly machine learning force field method is developed and
integrated into an electronic-structure code. This method realizes automatic generation of …

[HTML][HTML] Evaluation of the MACE force field architecture: From medicinal chemistry to materials science

DP Kovács, I Batatia, ES Arany… - The Journal of Chemical …, 2023 - pubs.aip.org
The MACE architecture represents the state of the art in the field of machine learning force
fields for a variety of in-domain, extrapolation, and low-data regime tasks. In this paper, we …