Normalizing flows for probabilistic modeling and inference

G Papamakarios, E Nalisnick, DJ Rezende… - Journal of Machine …, 2021 - jmlr.org
Normalizing flows provide a general mechanism for defining expressive probability
distributions, only requiring the specification of a (usually simple) base distribution and a …

Deep generative modelling: A comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models

S Bond-Taylor, A Leach, Y Long… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Deep generative models are a class of techniques that train deep neural networks to model
the distribution of training samples. Research has fragmented into various interconnected …

Denoising diffusion implicit models

J Song, C Meng, S Ermon - arxiv preprint arxiv:2010.02502, 2020 - arxiv.org
Denoising diffusion probabilistic models (DDPMs) have achieved high quality image
generation without adversarial training, yet they require simulating a Markov chain for many …

Score-based generative modeling through stochastic differential equations

Y Song, J Sohl-Dickstein, DP Kingma, A Kumar… - arxiv preprint arxiv …, 2020 - arxiv.org
Creating noise from data is easy; creating data from noise is generative modeling. We
present a stochastic differential equation (SDE) that smoothly transforms a complex data …

Denoising diffusion probabilistic models

J Ho, A Jain, P Abbeel - Advances in neural information …, 2020 - proceedings.neurips.cc
We present high quality image synthesis results using diffusion probabilistic models, a class
of latent variable models inspired by considerations from nonequilibrium thermodynamics …

Lion: Latent point diffusion models for 3d shape generation

A Vahdat, F Williams, Z Gojcic… - Advances in …, 2022 - proceedings.neurips.cc
Denoising diffusion models (DDMs) have shown promising results in 3D point cloud
synthesis. To advance 3D DDMs and make them useful for digital artists, we require (i) high …

Illuminating protein space with a programmable generative model

JB Ingraham, M Baranov, Z Costello, KW Barber… - Nature, 2023 - nature.com
Three billion years of evolution has produced a tremendous diversity of protein molecules,
but the full potential of proteins is likely to be much greater. Accessing this potential has …

Score-based generative modeling in latent space

A Vahdat, K Kreis, J Kautz - Advances in neural information …, 2021 - proceedings.neurips.cc
Score-based generative models (SGMs) have recently demonstrated impressive results in
terms of both sample quality and distribution coverage. However, they are usually applied …

Diffusion probabilistic models for 3d point cloud generation

S Luo, W Hu - Proceedings of the IEEE/CVF conference on …, 2021 - openaccess.thecvf.com
We present a probabilistic model for point cloud generation, which is fundamental for
various 3D vision tasks such as shape completion, upsampling, synthesis and data …

Normalizing flows: An introduction and review of current methods

I Kobyzev, SJD Prince… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
Normalizing Flows are generative models which produce tractable distributions where both
sampling and density evaluation can be efficient and exact. The goal of this survey article is …