Quantum information processing with superconducting circuits: a review
G Wendin - Reports on Progress in Physics, 2017 - iopscience.iop.org
During the last ten years, superconducting circuits have passed from being interesting
physical devices to becoming contenders for near-future useful and scalable quantum …
physical devices to becoming contenders for near-future useful and scalable quantum …
Quantum many-body simulations on digital quantum computers: State-of-the-art and future challenges
B Fauseweh - Nature Communications, 2024 - nature.com
Simulating quantum many-body systems is a key application for emerging quantum
processors. While analog quantum simulation has already demonstrated quantum …
processors. While analog quantum simulation has already demonstrated quantum …
Noise-induced barren plateaus in variational quantum algorithms
Abstract Variational Quantum Algorithms (VQAs) may be a path to quantum advantage on
Noisy Intermediate-Scale Quantum (NISQ) computers. A natural question is whether noise …
Noisy Intermediate-Scale Quantum (NISQ) computers. A natural question is whether noise …
Time-crystalline eigenstate order on a quantum processor
Quantum many-body systems display rich phase structure in their low-temperature
equilibrium states. However, much of nature is not in thermal equilibrium. Remarkably, it was …
equilibrium states. However, much of nature is not in thermal equilibrium. Remarkably, it was …
Unbiasing fermionic quantum Monte Carlo with a quantum computer
Interacting many-electron problems pose some of the greatest computational challenges in
science, with essential applications across many fields. The solutions to these problems will …
science, with essential applications across many fields. The solutions to these problems will …
Virtual distillation for quantum error mitigation
Contemporary quantum computers have relatively high levels of noise, making it difficult to
use them to perform useful calculations, even with a large number of qubits. Quantum error …
use them to perform useful calculations, even with a large number of qubits. Quantum error …
Effective quantum volume, fidelity and computational cost of noisy quantum processing experiments
Today's experimental noisy quantum processors can compete with and surpass all known
algorithms on state-of-the-art supercomputers for the computational benchmark task of …
algorithms on state-of-the-art supercomputers for the computational benchmark task of …
Quantum algorithms for quantum dynamics
Among the many computational challenges faced across different disciplines, quantum-
mechanical systems pose some of the hardest ones and offer a natural playground for the …
mechanical systems pose some of the hardest ones and offer a natural playground for the …
Purification-based quantum error mitigation of pair-correlated electron simulations
An important measure of the development of quantum computing platforms has been the
simulation of increasingly complex physical systems. Before fault-tolerant quantum …
simulation of increasingly complex physical systems. Before fault-tolerant quantum …
Noise-resilient edge modes on a chain of superconducting qubits
Inherent symmetry of a quantum system may protect its otherwise fragile states. Leveraging
such protection requires testing its robustness against uncontrolled environmental …
such protection requires testing its robustness against uncontrolled environmental …