Variational quantum algorithms
Applications such as simulating complicated quantum systems or solving large-scale linear
algebra problems are very challenging for classical computers, owing to the extremely high …
algebra problems are very challenging for classical computers, owing to the extremely high …
Noisy intermediate-scale quantum algorithms
A universal fault-tolerant quantum computer that can efficiently solve problems such as
integer factorization and unstructured database search requires millions of qubits with low …
integer factorization and unstructured database search requires millions of qubits with low …
Practical quantum advantage in quantum simulation
The development of quantum computing across several technologies and platforms has
reached the point of having an advantage over classical computers for an artificial problem …
reached the point of having an advantage over classical computers for an artificial problem …
Resolving the gravitational redshift across a millimetre-scale atomic sample
Einstein's theory of general relativity states that clocks at different gravitational potentials tick
at different rates relative to lab coordinates—an effect known as the gravitational redshift. As …
at different rates relative to lab coordinates—an effect known as the gravitational redshift. As …
Quantum science with optical tweezer arrays of ultracold atoms and molecules
Single atoms and molecules can be trapped in tightly focused beams of light that form
'optical tweezers', affording exquisite capabilities for the control and detection of individual …
'optical tweezers', affording exquisite capabilities for the control and detection of individual …
Hybrid quantum-classical algorithms and quantum error mitigation
Quantum computers can exploit a Hilbert space whose dimension increases exponentially
with the number of qubits. In experiment, quantum supremacy has recently been achieved …
with the number of qubits. In experiment, quantum supremacy has recently been achieved …
Multi-qubit gates and Schrödinger cat states in an optical clock
Many-particle entanglement is a key resource for achieving the fundamental precision limits
of a quantum sensor. Optical atomic clocks, the current state of the art in frequency precision …
of a quantum sensor. Optical atomic clocks, the current state of the art in frequency precision …
Long-range interacting quantum systems
In this review recent investigations are summarized of many-body quantum systems with
long-range interactions, which are currently realized in Rydberg atom arrays, dipolar …
long-range interactions, which are currently realized in Rydberg atom arrays, dipolar …
Quantum simulation and computing with Rydberg-interacting qubits
Arrays of optically trapped atoms excited to Rydberg states have recently emerged as a
competitive physical platform for quantum simulation and computing, where high-fidelity …
competitive physical platform for quantum simulation and computing, where high-fidelity …
Realizing spin squeezing with Rydberg interactions in an optical clock
Neutral-atom arrays trapped in optical potentials are a powerful platform for studying
quantum physics, combining precise single-particle control and detection with a range of …
quantum physics, combining precise single-particle control and detection with a range of …