How to dp-fy ml: A practical guide to machine learning with differential privacy

N Ponomareva, H Hazimeh, A Kurakin, Z Xu… - Journal of Artificial …, 2023 - jair.org
Abstract Machine Learning (ML) models are ubiquitous in real-world applications and are a
constant focus of research. Modern ML models have become more complex, deeper, and …

Machine learning for synthetic data generation: a review

Y Lu, M Shen, H Wang, X Wang, C van Rechem… - arxiv preprint arxiv …, 2023 - arxiv.org
Machine learning heavily relies on data, but real-world applications often encounter various
data-related issues. These include data of poor quality, insufficient data points leading to …

[PDF][PDF] DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models.

B Wang, W Chen, H Pei, C **e, M Kang, C Zhang, C Xu… - NeurIPS, 2023 - blogs.qub.ac.uk
Abstract Generative Pre-trained Transformer (GPT) models have exhibited exciting progress
in their capabilities, capturing the interest of practitioners and the public alike. Yet, while the …

Taxonomy of risks posed by language models

L Weidinger, J Uesato, M Rauh, C Griffin… - Proceedings of the …, 2022 - dl.acm.org
Responsible innovation on large-scale Language Models (LMs) requires foresight into and
in-depth understanding of the risks these models may pose. This paper develops a …

Foundation models and fair use

P Henderson, X Li, D Jurafsky, T Hashimoto… - Journal of Machine …, 2023 - jmlr.org
Existing foundation models are trained on copyrighted material. Deploying these models
can pose both legal and ethical risks when data creators fail to receive appropriate …

Analyzing leakage of personally identifiable information in language models

N Lukas, A Salem, R Sim, S Tople… - … IEEE Symposium on …, 2023 - ieeexplore.ieee.org
Language Models (LMs) have been shown to leak information about training data through
sentence-level membership inference and reconstruction attacks. Understanding the risk of …

On the opportunities and risks of foundation models

R Bommasani, DA Hudson, E Adeli, R Altman… - arxiv preprint arxiv …, 2021 - arxiv.org
AI is undergoing a paradigm shift with the rise of models (eg, BERT, DALL-E, GPT-3) that are
trained on broad data at scale and are adaptable to a wide range of downstream tasks. We …

Trustworthy LLMs: A survey and guideline for evaluating large language models' alignment

Y Liu, Y Yao, JF Ton, X Zhang, RGH Cheng… - arxiv preprint arxiv …, 2023 - arxiv.org
Ensuring alignment, which refers to making models behave in accordance with human
intentions [1, 2], has become a critical task before deploying large language models (LLMs) …

Large language models can be strong differentially private learners

X Li, F Tramer, P Liang, T Hashimoto - arxiv preprint arxiv:2110.05679, 2021 - arxiv.org
Differentially Private (DP) learning has seen limited success for building large deep learning
models of text, and straightforward attempts at applying Differentially Private Stochastic …

Unlocking high-accuracy differentially private image classification through scale

S De, L Berrada, J Hayes, SL Smith, B Balle - arxiv preprint arxiv …, 2022 - arxiv.org
Differential Privacy (DP) provides a formal privacy guarantee preventing adversaries with
access to a machine learning model from extracting information about individual training …