How to dp-fy ml: A practical guide to machine learning with differential privacy
Abstract Machine Learning (ML) models are ubiquitous in real-world applications and are a
constant focus of research. Modern ML models have become more complex, deeper, and …
constant focus of research. Modern ML models have become more complex, deeper, and …
Machine learning for synthetic data generation: a review
Machine learning heavily relies on data, but real-world applications often encounter various
data-related issues. These include data of poor quality, insufficient data points leading to …
data-related issues. These include data of poor quality, insufficient data points leading to …
[PDF][PDF] DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models.
Abstract Generative Pre-trained Transformer (GPT) models have exhibited exciting progress
in their capabilities, capturing the interest of practitioners and the public alike. Yet, while the …
in their capabilities, capturing the interest of practitioners and the public alike. Yet, while the …
Taxonomy of risks posed by language models
Responsible innovation on large-scale Language Models (LMs) requires foresight into and
in-depth understanding of the risks these models may pose. This paper develops a …
in-depth understanding of the risks these models may pose. This paper develops a …
Foundation models and fair use
Existing foundation models are trained on copyrighted material. Deploying these models
can pose both legal and ethical risks when data creators fail to receive appropriate …
can pose both legal and ethical risks when data creators fail to receive appropriate …
Analyzing leakage of personally identifiable information in language models
Language Models (LMs) have been shown to leak information about training data through
sentence-level membership inference and reconstruction attacks. Understanding the risk of …
sentence-level membership inference and reconstruction attacks. Understanding the risk of …
On the opportunities and risks of foundation models
AI is undergoing a paradigm shift with the rise of models (eg, BERT, DALL-E, GPT-3) that are
trained on broad data at scale and are adaptable to a wide range of downstream tasks. We …
trained on broad data at scale and are adaptable to a wide range of downstream tasks. We …
Trustworthy LLMs: A survey and guideline for evaluating large language models' alignment
Ensuring alignment, which refers to making models behave in accordance with human
intentions [1, 2], has become a critical task before deploying large language models (LLMs) …
intentions [1, 2], has become a critical task before deploying large language models (LLMs) …
Large language models can be strong differentially private learners
Differentially Private (DP) learning has seen limited success for building large deep learning
models of text, and straightforward attempts at applying Differentially Private Stochastic …
models of text, and straightforward attempts at applying Differentially Private Stochastic …
Unlocking high-accuracy differentially private image classification through scale
Differential Privacy (DP) provides a formal privacy guarantee preventing adversaries with
access to a machine learning model from extracting information about individual training …
access to a machine learning model from extracting information about individual training …