Object detection using YOLO: Challenges, architectural successors, datasets and applications

T Diwan, G Anirudh, JV Tembhurne - multimedia Tools and Applications, 2023 - Springer
Object detection is one of the predominant and challenging problems in computer vision.
Over the decade, with the expeditious evolution of deep learning, researchers have …

[HTML][HTML] Deep learning classifiers for hyperspectral imaging: A review

ME Paoletti, JM Haut, J Plaza, A Plaza - ISPRS Journal of Photogrammetry …, 2019 - Elsevier
Advances in computing technology have fostered the development of new and powerful
deep learning (DL) techniques, which have demonstrated promising results in a wide range …

Nhits: Neural hierarchical interpolation for time series forecasting

C Challu, KG Olivares, BN Oreshkin… - Proceedings of the …, 2023 - ojs.aaai.org
Recent progress in neural forecasting accelerated improvements in the performance of large-
scale forecasting systems. Yet, long-horizon forecasting remains a very difficult task. Two …

A novel combined approach based on deep Autoencoder and deep classifiers for credit card fraud detection

H Fanai, H Abbasimehr - Expert Systems with Applications, 2023 - Elsevier
Due to the growth of e-commerce and online payment methods, the number of fraudulent
transactions has increased. Financial institutions with online payment systems must utilize …

Change detection based on artificial intelligence: State-of-the-art and challenges

W Shi, M Zhang, R Zhang, S Chen, Z Zhan - Remote Sensing, 2020 - mdpi.com
Change detection based on remote sensing (RS) data is an important method of detecting
changes on the Earth's surface and has a wide range of applications in urban planning …

A critical review of machine learning of energy materials

C Chen, Y Zuo, W Ye, X Li, Z Deng… - Advanced Energy …, 2020 - Wiley Online Library
Abstract Machine learning (ML) is rapidly revolutionizing many fields and is starting to
change landscapes for physics and chemistry. With its ability to solve complex tasks …

Neural decoding of EEG signals with machine learning: a systematic review

M Saeidi, W Karwowski, FV Farahani, K Fiok, R Taiar… - Brain Sciences, 2021 - mdpi.com
Electroencephalography (EEG) is a non-invasive technique used to record the brain's
evoked and induced electrical activity from the scalp. Artificial intelligence, particularly …

Getting aligned on representational alignment

I Sucholutsky, L Muttenthaler, A Weller, A Peng… - arxiv preprint arxiv …, 2023 - arxiv.org
Biological and artificial information processing systems form representations that they can
use to categorize, reason, plan, navigate, and make decisions. How can we measure the …

Deep learning for healthcare applications based on physiological signals: A review

O Faust, Y Hagiwara, TJ Hong, OS Lih… - Computer methods and …, 2018 - Elsevier
Background and objective: We have cast the net into the ocean of knowledge to retrieve the
latest scientific research on deep learning methods for physiological signals. We found 53 …

A state-of-the-art review on machine learning-based multiscale modeling, simulation, homogenization and design of materials

D Bishara, Y **e, WK Liu, S Li - Archives of computational methods in …, 2023 - Springer
Multiscale simulation and homogenization of materials have become the major
computational technology as well as engineering tools in material modeling and material …