Learning with limited annotations: a survey on deep semi-supervised learning for medical image segmentation

R Jiao, Y Zhang, L Ding, B Xue, J Zhang, R Cai… - Computers in Biology …, 2024 - Elsevier
Medical image segmentation is a fundamental and critical step in many image-guided
clinical approaches. Recent success of deep learning-based segmentation methods usually …

Diffusion models in medical imaging: A comprehensive survey

A Kazerouni, EK Aghdam, M Heidari, R Azad… - Medical Image …, 2023 - Elsevier
Denoising diffusion models, a class of generative models, have garnered immense interest
lately in various deep-learning problems. A diffusion probabilistic model defines a forward …

Ambiguous medical image segmentation using diffusion models

A Rahman, JMJ Valanarasu… - Proceedings of the …, 2023 - openaccess.thecvf.com
Collective insights from a group of experts have always proven to outperform an individual's
best diagnostic for clinical tasks. For the task of medical image segmentation, existing …

nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation

F Isensee, PF Jaeger, SAA Kohl, J Petersen… - Nature …, 2021 - nature.com
Biomedical imaging is a driver of scientific discovery and a core component of medical care
and is being stimulated by the field of deep learning. While semantic segmentation …

Domain adaptation for medical image analysis: a survey

H Guan, M Liu - IEEE Transactions on Biomedical Engineering, 2021 - ieeexplore.ieee.org
Machine learning techniques used in computer-aided medical image analysis usually suffer
from the domain shift problem caused by different distributions between source/reference …

Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis

D Karimi, H Dou, SK Warfield, A Gholipour - Medical image analysis, 2020 - Elsevier
Supervised training of deep learning models requires large labeled datasets. There is a
growing interest in obtaining such datasets for medical image analysis applications …

Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study

C Baur, S Denner, B Wiestler, N Navab… - Medical Image …, 2021 - Elsevier
Deep unsupervised representation learning has recently led to new approaches in the field
of Unsupervised Anomaly Detection (UAD) in brain MRI. The main principle behind these …

Applications of deep learning techniques for automated multiple sclerosis detection using magnetic resonance imaging: A review

A Shoeibi, M Khodatars, M Jafari, P Moridian… - Computers in Biology …, 2021 - Elsevier
Multiple Sclerosis (MS) is a type of brain disease which causes visual, sensory, and motor
problems for people with a detrimental effect on the functioning of the nervous system. In …

Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation

T Nair, D Precup, DL Arnold, T Arbel - Medical image analysis, 2020 - Elsevier
Deep learning networks have recently been shown to outperform other segmentation
methods on various public, medical-image challenge datasets, particularly on metrics …

Convolutional neural networks for multi-class brain disease detection using MRI images

M Talo, O Yildirim, UB Baloglu, G Aydin… - … Medical Imaging and …, 2019 - Elsevier
The brain disorders may cause loss of some critical functions such as thinking, speech, and
movement. So, the early detection of brain diseases may help to get the timely best …