Heterogeneous federated learning: State-of-the-art and research challenges

M Ye, X Fang, B Du, PC Yuen, D Tao - ACM Computing Surveys, 2023 - dl.acm.org
Federated learning (FL) has drawn increasing attention owing to its potential use in large-
scale industrial applications. Existing FL works mainly focus on model homogeneous …

Federated learning review: Fundamentals, enabling technologies, and future applications

S Banabilah, M Aloqaily, E Alsayed, N Malik… - Information processing & …, 2022 - Elsevier
Federated Learning (FL) has been foundational in improving the performance of a wide
range of applications since it was first introduced by Google. Some of the most prominent …

Blockchain-based federated learning for securing internet of things: A comprehensive survey

W Issa, N Moustafa, B Turnbull, N Sohrabi… - ACM Computing …, 2023 - dl.acm.org
The Internet of Things (IoT) ecosystem connects physical devices to the internet, offering
significant advantages in agility, responsiveness, and potential environmental benefits. The …

A review of applications in federated learning

L Li, Y Fan, M Tse, KY Lin - Computers & Industrial Engineering, 2020 - Elsevier
Federated Learning (FL) is a collaboratively decentralized privacy-preserving technology to
overcome challenges of data silos and data sensibility. Exactly what research is carrying the …

Federated semi-supervised learning for COVID region segmentation in chest CT using multi-national data from China, Italy, Japan

D Yang, Z Xu, W Li, A Myronenko, HR Roth… - Medical image …, 2021 - Elsevier
The recent outbreak of Coronavirus Disease 2019 (COVID-19) has led to urgent needs for
reliable diagnosis and management of SARS-CoV-2 infection. The current guideline is using …

Fedproc: Prototypical contrastive federated learning on non-iid data

X Mu, Y Shen, K Cheng, X Geng, J Fu, T Zhang… - Future Generation …, 2023 - Elsevier
Federated learning (FL) enables multiple clients to jointly train high-performance deep
learning models while maintaining the training data locally. However, it is challenging to …

Collaborative unsupervised visual representation learning from decentralized data

W Zhuang, X Gan, Y Wen… - Proceedings of the …, 2021 - openaccess.thecvf.com
Unsupervised representation learning has achieved outstanding performances using
centralized data available on the Internet. However, the increasing awareness of privacy …

Divergence-aware federated self-supervised learning

W Zhuang, Y Wen, S Zhang - arxiv preprint arxiv:2204.04385, 2022 - arxiv.org
Self-supervised learning (SSL) is capable of learning remarkable representations from
centrally available data. Recent works further implement federated learning with SSL to …

Federated unsupervised representation learning

F Zhang, K Kuang, L Chen, Z You, T Shen… - Frontiers of Information …, 2023 - Springer
To leverage the enormous amount of unlabeled data on distributed edge devices, we
formulate a new problem in federated learning called federated unsupervised …

Federated learning and its role in the privacy preservation of IoT devices

T Alam, R Gupta - Future Internet, 2022 - mdpi.com
Federated learning (FL) is a cutting-edge artificial intelligence approach. It is a decentralized
problem-solving technique that allows users to train using massive data. Unprocessed …