Bayesian statistics and modelling

R van de Schoot, S Depaoli, R King, B Kramer… - Nature Reviews …, 2021 - nature.com
Bayesian statistics is an approach to data analysis based on Bayes' theorem, where
available knowledge about parameters in a statistical model is updated with the information …

Hands-on Bayesian neural networks—A tutorial for deep learning users

LV Jospin, H Laga, F Boussaid… - IEEE Computational …, 2022 - ieeexplore.ieee.org
Modern deep learning methods constitute incredibly powerful tools to tackle a myriad of
challenging problems. However, since deep learning methods operate as black boxes, the …

[CITATION][C] An introduction to variational autoencoders

DP Kingma, M Welling - Foundations and Trends® in …, 2019 - nowpublishers.com
An Introduction to Variational Autoencoders Page 1 An Introduction to Variational Autoencoders
Page 2 Other titles in Foundations and Trends R in Machine Learning Computational Optimal …

Virtual adversarial training: a regularization method for supervised and semi-supervised learning

T Miyato, S Maeda, M Koyama… - IEEE transactions on …, 2018 - ieeexplore.ieee.org
We propose a new regularization method based on virtual adversarial loss: a new measure
of local smoothness of the conditional label distribution given input. Virtual adversarial loss …

Optimization methods for large-scale machine learning

L Bottou, FE Curtis, J Nocedal - SIAM review, 2018 - SIAM
This paper provides a review and commentary on the past, present, and future of numerical
optimization algorithms in the context of machine learning applications. Through case …

Dropout as a bayesian approximation: Representing model uncertainty in deep learning

Y Gal, Z Ghahramani - international conference on machine …, 2016 - proceedings.mlr.press
Deep learning tools have gained tremendous attention in applied machine learning.
However such tools for regression and classification do not capture model uncertainty. In …

Density estimation using real nvp

L Dinh, J Sohl-Dickstein, S Bengio - arxiv preprint arxiv:1605.08803, 2016 - arxiv.org
Unsupervised learning of probabilistic models is a central yet challenging problem in
machine learning. Specifically, designing models with tractable learning, sampling …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

The concrete distribution: A continuous relaxation of discrete random variables

CJ Maddison, A Mnih, YW Teh - arxiv preprint arxiv:1611.00712, 2016 - arxiv.org
The reparameterization trick enables optimizing large scale stochastic computation graphs
via gradient descent. The essence of the trick is to refactor each stochastic node into a …

Opportunities and obstacles for deep learning in biology and medicine

T Ching, DS Himmelstein… - Journal of the …, 2018 - royalsocietypublishing.org
Deep learning describes a class of machine learning algorithms that are capable of
combining raw inputs into layers of intermediate features. These algorithms have recently …