Bayesian statistics and modelling
Bayesian statistics is an approach to data analysis based on Bayes' theorem, where
available knowledge about parameters in a statistical model is updated with the information …
available knowledge about parameters in a statistical model is updated with the information …
Hands-on Bayesian neural networks—A tutorial for deep learning users
Modern deep learning methods constitute incredibly powerful tools to tackle a myriad of
challenging problems. However, since deep learning methods operate as black boxes, the …
challenging problems. However, since deep learning methods operate as black boxes, the …
[CITATION][C] An introduction to variational autoencoders
An Introduction to Variational Autoencoders Page 1 An Introduction to Variational Autoencoders
Page 2 Other titles in Foundations and Trends R in Machine Learning Computational Optimal …
Page 2 Other titles in Foundations and Trends R in Machine Learning Computational Optimal …
Virtual adversarial training: a regularization method for supervised and semi-supervised learning
We propose a new regularization method based on virtual adversarial loss: a new measure
of local smoothness of the conditional label distribution given input. Virtual adversarial loss …
of local smoothness of the conditional label distribution given input. Virtual adversarial loss …
Optimization methods for large-scale machine learning
This paper provides a review and commentary on the past, present, and future of numerical
optimization algorithms in the context of machine learning applications. Through case …
optimization algorithms in the context of machine learning applications. Through case …
Dropout as a bayesian approximation: Representing model uncertainty in deep learning
Deep learning tools have gained tremendous attention in applied machine learning.
However such tools for regression and classification do not capture model uncertainty. In …
However such tools for regression and classification do not capture model uncertainty. In …
Density estimation using real nvp
Unsupervised learning of probabilistic models is a central yet challenging problem in
machine learning. Specifically, designing models with tractable learning, sampling …
machine learning. Specifically, designing models with tractable learning, sampling …
Graph neural networks: foundation, frontiers and applications
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …
recent years. Graph neural networks, also known as deep learning on graphs, graph …
The concrete distribution: A continuous relaxation of discrete random variables
The reparameterization trick enables optimizing large scale stochastic computation graphs
via gradient descent. The essence of the trick is to refactor each stochastic node into a …
via gradient descent. The essence of the trick is to refactor each stochastic node into a …
Opportunities and obstacles for deep learning in biology and medicine
T Ching, DS Himmelstein… - Journal of the …, 2018 - royalsocietypublishing.org
Deep learning describes a class of machine learning algorithms that are capable of
combining raw inputs into layers of intermediate features. These algorithms have recently …
combining raw inputs into layers of intermediate features. These algorithms have recently …