Safe learning in robotics: From learning-based control to safe reinforcement learning

L Brunke, M Greeff, AW Hall, Z Yuan… - Annual Review of …, 2022 - annualreviews.org
The last half decade has seen a steep rise in the number of contributions on safe learning
methods for real-world robotic deployments from both the control and reinforcement learning …

[HTML][HTML] Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges

SO Abioye, LO Oyedele, L Akanbi, A Ajayi… - Journal of Building …, 2021 - Elsevier
The growth of the construction industry is severely limited by the myriad complex challenges
it faces such as cost and time overruns, health and safety, productivity and labour shortages …

Voyager: An open-ended embodied agent with large language models

G Wang, Y **e, Y Jiang, A Mandlekar, C **ao… - arxiv preprint arxiv …, 2023 - arxiv.org
We introduce Voyager, the first LLM-powered embodied lifelong learning agent in Minecraft
that continuously explores the world, acquires diverse skills, and makes novel discoveries …

Interpretable machine learning: Fundamental principles and 10 grand challenges

C Rudin, C Chen, Z Chen, H Huang… - Statistic …, 2022 - projecteuclid.org
Interpretability in machine learning (ML) is crucial for high stakes decisions and
troubleshooting. In this work, we provide fundamental principles for interpretable ML, and …

Mastering the game of go without human knowledge

D Silver, J Schrittwieser, K Simonyan, I Antonoglou… - nature, 2017 - nature.com
A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa,
superhuman proficiency in challenging domains. Recently, AlphaGo became the first …

Sim-to-real transfer in deep reinforcement learning for robotics: a survey

W Zhao, JP Queralta… - 2020 IEEE symposium …, 2020 - ieeexplore.ieee.org
Deep reinforcement learning has recently seen huge success across multiple areas in the
robotics domain. Owing to the limitations of gathering real-world data, ie, sample inefficiency …

How to train your robot with deep reinforcement learning: lessons we have learned

J Ibarz, J Tan, C Finn, M Kalakrishnan… - … Journal of Robotics …, 2021 - journals.sagepub.com
Deep reinforcement learning (RL) has emerged as a promising approach for autonomously
acquiring complex behaviors from low-level sensor observations. Although a large portion of …

Multi-agent reinforcement learning: A selective overview of theories and algorithms

K Zhang, Z Yang, T Başar - Handbook of reinforcement learning and …, 2021 - Springer
Recent years have witnessed significant advances in reinforcement learning (RL), which
has registered tremendous success in solving various sequential decision-making problems …

[HTML][HTML] A state-of-the-art survey on deep learning theory and architectures

MZ Alom, TM Taha, C Yakopcic, S Westberg, P Sidike… - electronics, 2019 - mdpi.com
In recent years, deep learning has garnered tremendous success in a variety of application
domains. This new field of machine learning has been growing rapidly and has been …

A review of safe reinforcement learning: Methods, theory and applications

S Gu, L Yang, Y Du, G Chen, F Walter, J Wang… - arxiv preprint arxiv …, 2022 - arxiv.org
Reinforcement Learning (RL) has achieved tremendous success in many complex decision-
making tasks. However, safety concerns are raised during deploying RL in real-world …