Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A survey on active learning: State-of-the-art, practical challenges and research directions
Despite the availability and ease of collecting a large amount of free, unlabeled data, the
expensive and time-consuming labeling process is still an obstacle to labeling a sufficient …
expensive and time-consuming labeling process is still an obstacle to labeling a sufficient …
Learning under concept drift: A review
Concept drift describes unforeseeable changes in the underlying distribution of streaming
data overtime. Concept drift research involves the development of methodologies and …
data overtime. Concept drift research involves the development of methodologies and …
A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework
Class imbalance poses new challenges when it comes to classifying data streams. Many
algorithms recently proposed in the literature tackle this problem using a variety of data …
algorithms recently proposed in the literature tackle this problem using a variety of data …
Ensemble learning for data stream analysis: A survey
In many applications of information systems learning algorithms have to act in dynamic
environments where data are collected in the form of transient data streams. Compared to …
environments where data are collected in the form of transient data streams. Compared to …
[HTML][HTML] Learning from imbalanced data: open challenges and future directions
B Krawczyk - Progress in artificial intelligence, 2016 - Springer
Despite more than two decades of continuous development learning from imbalanced data
is still a focus of intense research. Starting as a problem of skewed distributions of binary …
is still a focus of intense research. Starting as a problem of skewed distributions of binary …
Active learning query strategies for classification, regression, and clustering: A survey
Generally, data is available abundantly in unlabeled form, and its annotation requires some
cost. The labeling, as well as learning cost, can be minimized by learning with the minimum …
cost. The labeling, as well as learning cost, can be minimized by learning with the minimum …
A survey on data preprocessing for data stream mining: Current status and future directions
Data preprocessing and reduction have become essential techniques in current knowledge
discovery scenarios, dominated by increasingly large datasets. These methods aim at …
discovery scenarios, dominated by increasingly large datasets. These methods aim at …
Learning in nonstationary environments: A survey
The prevalence of mobile phones, the internet-of-things technology, and networks of
sensors has led to an enormous and ever increasing amount of data that are now more …
sensors has led to an enormous and ever increasing amount of data that are now more …
A survey on concept drift adaptation
Concept drift primarily refers to an online supervised learning scenario when the relation
between the input data and the target variable changes over time. Assuming a general …
between the input data and the target variable changes over time. Assuming a general …
Online and non-parametric drift detection methods based on Hoeffding's bounds
I Frias-Blanco, J del Campo-Ávila… - … on Knowledge and …, 2014 - ieeexplore.ieee.org
Incremental and online learning algorithms are more relevant in the data mining context
because of the increasing necessity to process data streams. In this context, the target …
because of the increasing necessity to process data streams. In this context, the target …