A survey on active learning: State-of-the-art, practical challenges and research directions

A Tharwat, W Schenck - Mathematics, 2023 - mdpi.com
Despite the availability and ease of collecting a large amount of free, unlabeled data, the
expensive and time-consuming labeling process is still an obstacle to labeling a sufficient …

Learning under concept drift: A review

J Lu, A Liu, F Dong, F Gu, J Gama… - IEEE transactions on …, 2018 - ieeexplore.ieee.org
Concept drift describes unforeseeable changes in the underlying distribution of streaming
data overtime. Concept drift research involves the development of methodologies and …

A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework

G Aguiar, B Krawczyk, A Cano - Machine learning, 2024 - Springer
Class imbalance poses new challenges when it comes to classifying data streams. Many
algorithms recently proposed in the literature tackle this problem using a variety of data …

Ensemble learning for data stream analysis: A survey

B Krawczyk, LL Minku, J Gama, J Stefanowski… - Information …, 2017 - Elsevier
In many applications of information systems learning algorithms have to act in dynamic
environments where data are collected in the form of transient data streams. Compared to …

[HTML][HTML] Learning from imbalanced data: open challenges and future directions

B Krawczyk - Progress in artificial intelligence, 2016 - Springer
Despite more than two decades of continuous development learning from imbalanced data
is still a focus of intense research. Starting as a problem of skewed distributions of binary …

Active learning query strategies for classification, regression, and clustering: A survey

P Kumar, A Gupta - Journal of Computer Science and Technology, 2020 - Springer
Generally, data is available abundantly in unlabeled form, and its annotation requires some
cost. The labeling, as well as learning cost, can be minimized by learning with the minimum …

A survey on data preprocessing for data stream mining: Current status and future directions

S Ramírez-Gallego, B Krawczyk, S García, M Woźniak… - Neurocomputing, 2017 - Elsevier
Data preprocessing and reduction have become essential techniques in current knowledge
discovery scenarios, dominated by increasingly large datasets. These methods aim at …

Learning in nonstationary environments: A survey

G Ditzler, M Roveri, C Alippi… - IEEE Computational …, 2015 - ieeexplore.ieee.org
The prevalence of mobile phones, the internet-of-things technology, and networks of
sensors has led to an enormous and ever increasing amount of data that are now more …

A survey on concept drift adaptation

J Gama, I Žliobaitė, A Bifet, M Pechenizkiy… - ACM computing …, 2014 - dl.acm.org
Concept drift primarily refers to an online supervised learning scenario when the relation
between the input data and the target variable changes over time. Assuming a general …

Online and non-parametric drift detection methods based on Hoeffding's bounds

I Frias-Blanco, J del Campo-Ávila… - … on Knowledge and …, 2014 - ieeexplore.ieee.org
Incremental and online learning algorithms are more relevant in the data mining context
because of the increasing necessity to process data streams. In this context, the target …