Advances in adversarial attacks and defenses in computer vision: A survey
Deep Learning is the most widely used tool in the contemporary field of computer vision. Its
ability to accurately solve complex problems is employed in vision research to learn deep …
ability to accurately solve complex problems is employed in vision research to learn deep …
Better diffusion models further improve adversarial training
It has been recognized that the data generated by the denoising diffusion probabilistic
model (DDPM) improves adversarial training. After two years of rapid development in …
model (DDPM) improves adversarial training. After two years of rapid development in …
Rethinking semantic segmentation: A prototype view
Prevalent semantic segmentation solutions, despite their different network designs (FCN
based or attention based) and mask decoding strategies (parametric softmax based or pixel …
based or attention based) and mask decoding strategies (parametric softmax based or pixel …
[HTML][HTML] Pre-trained models: Past, present and future
Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved
great success and become a milestone in the field of artificial intelligence (AI). Owing to …
great success and become a milestone in the field of artificial intelligence (AI). Owing to …
Exploring cross-image pixel contrast for semantic segmentation
Current semantic segmentation methods focus only on mining" local" context, ie,
dependencies between pixels within individual images, by context-aggregation modules …
dependencies between pixels within individual images, by context-aggregation modules …
Robustbench: a standardized adversarial robustness benchmark
As a research community, we are still lacking a systematic understanding of the progress on
adversarial robustness which often makes it hard to identify the most promising ideas in …
adversarial robustness which often makes it hard to identify the most promising ideas in …
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
The field of defense strategies against adversarial attacks has significantly grown over the
last years, but progress is hampered as the evaluation of adversarial defenses is often …
last years, but progress is hampered as the evaluation of adversarial defenses is often …
On adaptive attacks to adversarial example defenses
Adaptive attacks have (rightfully) become the de facto standard for evaluating defenses to
adversarial examples. We find, however, that typical adaptive evaluations are incomplete …
adversarial examples. We find, however, that typical adaptive evaluations are incomplete …
Visual recognition with deep nearest centroids
We devise deep nearest centroids (DNC), a conceptually elegant yet surprisingly effective
network for large-scale visual recognition, by revisiting Nearest Centroids, one of the most …
network for large-scale visual recognition, by revisiting Nearest Centroids, one of the most …
Minimally distorted adversarial examples with a fast adaptive boundary attack
The evaluation of robustness against adversarial manipulation of neural networks-based
classifiers is mainly tested with empirical attacks as methods for the exact computation, even …
classifiers is mainly tested with empirical attacks as methods for the exact computation, even …