A survey of community detection approaches: From statistical modeling to deep learning

D **, Z Yu, P Jiao, S Pan, D He, J Wu… - … on Knowledge and …, 2021 - ieeexplore.ieee.org
Community detection, a fundamental task for network analysis, aims to partition a network
into multiple sub-structures to help reveal their latent functions. Community detection has …

Link prediction techniques, applications, and performance: A survey

A Kumar, SS Singh, K Singh, B Biswas - Physica A: Statistical Mechanics …, 2020 - Elsevier
Link prediction finds missing links (in static networks) or predicts the likelihood of future links
(in dynamic networks). The latter definition is useful in network evolution (Wang et al., 2011; …

Large scale learning on non-homophilous graphs: New benchmarks and strong simple methods

D Lim, F Hohne, X Li, SL Huang… - Advances in …, 2021 - proceedings.neurips.cc
Many widely used datasets for graph machine learning tasks have generally been
homophilous, where nodes with similar labels connect to each other. Recently, new Graph …

ROLAND: graph learning framework for dynamic graphs

J You, T Du, J Leskovec - Proceedings of the 28th ACM SIGKDD …, 2022 - dl.acm.org
Graph Neural Networks (GNNs) have been successfully applied to many real-world static
graphs. However, the success of static graphs has not fully translated to dynamic graphs due …

Parameterized explainer for graph neural network

D Luo, W Cheng, D Xu, W Yu, B Zong… - Advances in neural …, 2020 - proceedings.neurips.cc
Despite recent progress in Graph Neural Networks (GNNs), explaining predictions made by
GNNs remains a challenging open problem. The leading method mainly addresses the local …

Gcc: Graph contrastive coding for graph neural network pre-training

J Qiu, Q Chen, Y Dong, J Zhang, H Yang… - Proceedings of the 26th …, 2020 - dl.acm.org
Graph representation learning has emerged as a powerful technique for addressing real-
world problems. Various downstream graph learning tasks have benefited from its recent …

Evaluating post-hoc explanations for graph neural networks via robustness analysis

J Fang, W Liu, Y Gao, Z Liu, A Zhang… - Advances in neural …, 2023 - proceedings.neurips.cc
This work studies the evaluation of explaining graph neural networks (GNNs), which is
crucial to the credibility of post-hoc explainability in practical usage. Conventional evaluation …

Decoupling the depth and scope of graph neural networks

H Zeng, M Zhang, Y **a, A Srivastava… - Advances in …, 2021 - proceedings.neurips.cc
State-of-the-art Graph Neural Networks (GNNs) have limited scalability with respect to the
graph and model sizes. On large graphs, increasing the model depth often means …

Combining label propagation and simple models out-performs graph neural networks

Q Huang, H He, A Singh, SN Lim… - arxiv preprint arxiv …, 2020 - arxiv.org
Graph Neural Networks (GNNs) are the predominant technique for learning over graphs.
However, there is relatively little understanding of why GNNs are successful in practice and …

Diffusion improves graph learning

J Gasteiger, S Weißenberger… - Advances in neural …, 2019 - proceedings.neurips.cc
Graph convolution is the core of most Graph Neural Networks (GNNs) and usually
approximated by message passing between direct (one-hop) neighbors. In this work, we …