Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Transforming medical imaging with Transformers? A comparative review of key properties, current progresses, and future perspectives
Transformer, one of the latest technological advances of deep learning, has gained
prevalence in natural language processing or computer vision. Since medical imaging bear …
prevalence in natural language processing or computer vision. Since medical imaging bear …
Neural network approximation
Neural networks (NNs) are the method of choice for building learning algorithms. They are
now being investigated for other numerical tasks such as solving high-dimensional partial …
now being investigated for other numerical tasks such as solving high-dimensional partial …
Evolutionary optimization of model merging recipes
Large language models (LLMs) have become increasingly capable, but their development
often requires substantial computational resources. Although model merging has emerged …
often requires substantial computational resources. Although model merging has emerged …
Foundational challenges in assuring alignment and safety of large language models
This work identifies 18 foundational challenges in assuring the alignment and safety of large
language models (LLMs). These challenges are organized into three different categories …
language models (LLMs). These challenges are organized into three different categories …
The power of quantum neural networks
It is unknown whether near-term quantum computers are advantageous for machine
learning tasks. In this work we address this question by trying to understand how powerful …
learning tasks. In this work we address this question by trying to understand how powerful …
Sharpness-aware gradient matching for domain generalization
The goal of domain generalization (DG) is to enhance the generalization capability of the
model learned from a source domain to other unseen domains. The recently developed …
model learned from a source domain to other unseen domains. The recently developed …
User-friendly introduction to PAC-Bayes bounds
P Alquier - Foundations and Trends® in Machine Learning, 2024 - nowpublishers.com
Aggregated predictors are obtained by making a set of basic predictors vote according to
some weights, that is, to some probability distribution. Randomized predictors are obtained …
some weights, that is, to some probability distribution. Randomized predictors are obtained …
Swad: Domain generalization by seeking flat minima
Abstract Domain generalization (DG) methods aim to achieve generalizability to an unseen
target domain by using only training data from the source domains. Although a variety of DG …
target domain by using only training data from the source domains. Although a variety of DG …
Bayesian deep learning and a probabilistic perspective of generalization
The key distinguishing property of a Bayesian approach is marginalization, rather than using
a single setting of weights. Bayesian marginalization can particularly improve the accuracy …
a single setting of weights. Bayesian marginalization can particularly improve the accuracy …
Towards efficient and scalable sharpness-aware minimization
Abstract Recently, Sharpness-Aware Minimization (SAM), which connects the geometry of
the loss landscape and generalization, has demonstrated a significant performance boost …
the loss landscape and generalization, has demonstrated a significant performance boost …