Deep learning for 3d point clouds: A survey
Point cloud learning has lately attracted increasing attention due to its wide applications in
many areas, such as computer vision, autonomous driving, and robotics. As a dominating …
many areas, such as computer vision, autonomous driving, and robotics. As a dominating …
BIM, machine learning and computer vision techniques in underground construction: Current status and future perspectives
The architecture, engineering and construction (AEC) industry is experiencing a
technological revolution driven by booming digitisation and automation. Advances in …
technological revolution driven by booming digitisation and automation. Advances in …
Point transformer v2: Grouped vector attention and partition-based pooling
As a pioneering work exploring transformer architecture for 3D point cloud understanding,
Point Transformer achieves impressive results on multiple highly competitive benchmarks. In …
Point Transformer achieves impressive results on multiple highly competitive benchmarks. In …
Stratified transformer for 3d point cloud segmentation
Abstract 3D point cloud segmentation has made tremendous progress in recent years. Most
current methods focus on aggregating local features, but fail to directly model long-range …
current methods focus on aggregating local features, but fail to directly model long-range …
Point Transformer V3: Simpler Faster Stronger
This paper is not motivated to seek innovation within the attention mechanism. Instead it
focuses on overcoming the existing trade-offs between accuracy and efficiency within the …
focuses on overcoming the existing trade-offs between accuracy and efficiency within the …
An end-to-end transformer model for 3d object detection
We propose 3DETR, an end-to-end Transformer based object detection model for 3D point
clouds. Compared to existing detection methods that employ a number of 3D-specific …
clouds. Compared to existing detection methods that employ a number of 3D-specific …
Paconv: Position adaptive convolution with dynamic kernel assembling on point clouds
Abstract We introduce Position Adaptive Convolution (PAConv), a generic convolution
operation for 3D point cloud processing. The key of PAConv is to construct the convolution …
operation for 3D point cloud processing. The key of PAConv is to construct the convolution …
Point transformer
Self-attention networks have revolutionized natural language processing and are making
impressive strides in image analysis tasks such as image classification and object detection …
impressive strides in image analysis tasks such as image classification and object detection …
Pct: Point cloud transformer
The irregular domain and lack of ordering make it challenging to design deep neural
networks for point cloud processing. This paper presents a novel framework named Point …
networks for point cloud processing. This paper presents a novel framework named Point …
Cylindrical and asymmetrical 3d convolution networks for lidar segmentation
State-of-the-art methods for large-scale driving-scene LiDAR segmentation often project the
point clouds to 2D space and then process them via 2D convolution. Although this …
point clouds to 2D space and then process them via 2D convolution. Although this …