Machine learning force fields

OT Unke, S Chmiela, HE Sauceda… - Chemical …, 2021 - ACS Publications
In recent years, the use of machine learning (ML) in computational chemistry has enabled
numerous advances previously out of reach due to the computational complexity of …

Recent advances and applications of machine learning in solid-state materials science

J Schmidt, MRG Marques, S Botti… - npj computational …, 2019 - nature.com
One of the most exciting tools that have entered the material science toolbox in recent years
is machine learning. This collection of statistical methods has already proved to be capable …

Combining machine learning and computational chemistry for predictive insights into chemical systems

JA Keith, V Vassilev-Galindo, B Cheng… - Chemical …, 2021 - ACS Publications
Machine learning models are poised to make a transformative impact on chemical sciences
by dramatically accelerating computational algorithms and amplifying insights available from …

Schnet–a deep learning architecture for molecules and materials

KT Schütt, HE Sauceda, PJ Kindermans… - The Journal of …, 2018 - pubs.aip.org
Deep learning has led to a paradigm shift in artificial intelligence, including web, text, and
image search, speech recognition, as well as bioinformatics, with growing impact in …

Physics-inspired structural representations for molecules and materials

F Musil, A Grisafi, AP Bartók, C Ortner… - Chemical …, 2021 - ACS Publications
The first step in the construction of a regression model or a data-driven analysis, aiming to
predict or elucidate the relationship between the atomic-scale structure of matter and its …

Machine-learned potentials for next-generation matter simulations

P Friederich, F Häse, J Proppe, A Aspuru-Guzik - Nature Materials, 2021 - nature.com
The choice of simulation methods in computational materials science is driven by a
fundamental trade-off: bridging large time-and length-scales with highly accurate …

QSAR without borders

EN Muratov, J Bajorath, RP Sheridan… - Chemical Society …, 2020 - pubs.rsc.org
Prediction of chemical bioactivity and physical properties has been one of the most
important applications of statistical and more recently, machine learning and artificial …

Machine learning in materials informatics: recent applications and prospects

R Ramprasad, R Batra, G Pilania… - npj Computational …, 2017 - nature.com
Propelled partly by the Materials Genome Initiative, and partly by the algorithmic
developments and the resounding successes of data-driven efforts in other domains …

Quantum-chemical insights from deep tensor neural networks

KT Schütt, F Arbabzadah, S Chmiela, KR Müller… - Nature …, 2017 - nature.com
Learning from data has led to paradigm shifts in a multitude of disciplines, including web,
text and image search, speech recognition, as well as bioinformatics. Can machine learning …

Perspective: Machine learning potentials for atomistic simulations

J Behler - The Journal of chemical physics, 2016 - pubs.aip.org
Nowadays, computer simulations have become a standard tool in essentially all fields of
chemistry, condensed matter physics, and materials science. In order to keep up with state …