A systematic literature review on binary neural networks

R Sayed, H Azmi, H Shawkey, AH Khalil… - IEEE Access, 2023 - ieeexplore.ieee.org
This paper presents an extensive literature review on Binary Neural Network (BNN). BNN
utilizes binary weights and activation function parameters to substitute the full-precision …

The second international verification of neural networks competition (vnn-comp 2021): Summary and results

S Bak, C Liu, T Johnson - arxiv preprint arxiv:2109.00498, 2021 - arxiv.org
This report summarizes the second International Verification of Neural Networks
Competition (VNN-COMP 2021), held as a part of the 4th Workshop on Formal Methods for …

Fuzzing deep-learning libraries via automated relational api inference

Y Deng, C Yang, A Wei, L Zhang - Proceedings of the 30th ACM Joint …, 2022 - dl.acm.org
Deep Learning (DL) has gained wide attention in recent years. Meanwhile, bugs in DL
systems can lead to serious consequences, and may even threaten human lives. As a result …

Towards formal XAI: formally approximate minimal explanations of neural networks

S Bassan, G Katz - International Conference on Tools and Algorithms for …, 2023 - Springer
With the rapid growth of machine learning, deep neural networks (DNNs) are now being
used in numerous domains. Unfortunately, DNNs are “black-boxes”, and cannot be …

Verifying learning-augmented systems

T Eliyahu, Y Kazak, G Katz, M Schapira - Proceedings of the 2021 ACM …, 2021 - dl.acm.org
The application of deep reinforcement learning (DRL) to computer and networked systems
has recently gained significant popularity. However, the obscurity of decisions by DRL …

Reluplex: a calculus for reasoning about deep neural networks

G Katz, C Barrett, DL Dill, K Julian… - Formal Methods in …, 2022 - Springer
Deep neural networks have emerged as a widely used and effective means for tackling
complex, real-world problems. However, a major obstacle in applying them to safety-critical …

[PDF][PDF] Towards scalable verification of deep reinforcement learning

G Amir, M Schapira, G Katz - 2021 formal methods in computer …, 2021 - library.oapen.org
Deep neural networks (DNNs) have gained significant popularity in recent years, becoming
the state of the art in a variety of domains. In particular, deep reinforcement learning (DRL) …

An abstraction-refinement approach to verifying convolutional neural networks

M Ostrovsky, C Barrett, G Katz - International Symposium on Automated …, 2022 - Springer
Convolutional neural networks (CNNs) have achieved immense popularity in areas like
computer vision, image processing, speech proccessing, and many others. Unfortunately …

Verifying generalization in deep learning

G Amir, O Maayan, T Zelazny, G Katz… - … Conference on Computer …, 2023 - Springer
Deep neural networks (DNNs) are the workhorses of deep learning, which constitutes the
state of the art in numerous application domains. However, DNN-based decision rules are …

[PDF][PDF] Formally Explaining Neural Networks within Reactive Systems

S Bassan, G Amir, D Corsi, I Refaeli… - 2023 Formal Methods in …, 2023 - library.oapen.org
Deep neural networks (DNNs) are increasingly being used as controllers in reactive
systems. However, DNNs are highly opaque, which renders it difficult to explain and justify …