A comprehensive survey of continual learning: theory, method and application

L Wang, X Zhang, H Su, J Zhu - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …

[HTML][HTML] Multi-source information fusion: Progress and future

LI **nde, F Dunkin, J Dezert - Chinese Journal of Aeronautics, 2024 - Elsevier
Abstract Multi-Source Information Fusion (MSIF), as a comprehensive interdisciplinary field
based on modern information technology, has gained significant research value and …

Three types of incremental learning

GM Van de Ven, T Tuytelaars, AS Tolias - Nature Machine Intelligence, 2022 - nature.com
Incrementally learning new information from a non-stationary stream of data, referred to as
'continual learning', is a key feature of natural intelligence, but a challenging problem for …

Video pretraining (vpt): Learning to act by watching unlabeled online videos

B Baker, I Akkaya, P Zhokov… - Advances in …, 2022 - proceedings.neurips.cc
Pretraining on noisy, internet-scale datasets has been heavily studied as a technique for
training models with broad, general capabilities for text, images, and other modalities …

Incorporating neuro-inspired adaptability for continual learning in artificial intelligence

L Wang, X Zhang, Q Li, M Zhang, H Su, J Zhu… - Nature Machine …, 2023 - nature.com
Continual learning aims to empower artificial intelligence with strong adaptability to the real
world. For this purpose, a desirable solution should properly balance memory stability with …

[HTML][HTML] Battery safety: Machine learning-based prognostics

J Zhao, X Feng, Q Pang, M Fowler, Y Lian… - Progress in Energy and …, 2024 - Elsevier
Lithium-ion batteries play a pivotal role in a wide range of applications, from electronic
devices to large-scale electrified transportation systems and grid-scale energy storage …

[HTML][HTML] Deep learning in business analytics: A clash of expectations and reality

M Schmitt - International Journal of Information Management Data …, 2023 - Elsevier
Our fast-paced digital economy shaped by global competition requires increased data-
driven decision-making based on artificial intelligence (AI) and machine learning (ML). The …

Online dynamical learning and sequence memory with neuromorphic nanowire networks

R Zhu, S Lilak, A Loeffler, J Lizier, A Stieg… - Nature …, 2023 - nature.com
Abstract Nanowire Networks (NWNs) belong to an emerging class of neuromorphic systems
that exploit the unique physical properties of nanostructured materials. In addition to their …

Battery health diagnostics: Bridging the gap between academia and industry

Z Wang, D Shi, J Zhao, Z Chu, D Guo, C Eze, X Qu… - eTransportation, 2024 - Elsevier
Diagnostics of battery health, which encompass evaluation metrics such as state of health,
remaining useful lifetime, and end of life, are critical across various applications, from …

Continual learning: Applications and the road forward

E Verwimp, R Aljundi, S Ben-David, M Bethge… - arxiv preprint arxiv …, 2023 - arxiv.org
Continual learning is a subfield of machine learning, which aims to allow machine learning
models to continuously learn on new data, by accumulating knowledge without forgetting …