Dataset distillation: A comprehensive review

R Yu, S Liu, X Wang - IEEE transactions on pattern analysis …, 2023 - ieeexplore.ieee.org
Recent success of deep learning is largely attributed to the sheer amount of data used for
training deep neural networks. Despite the unprecedented success, the massive data …

A comprehensive survey of dataset distillation

S Lei, D Tao - IEEE Transactions on Pattern Analysis and …, 2023 - ieeexplore.ieee.org
Deep learning technology has developed unprecedentedly in the last decade and has
become the primary choice in many application domains. This progress is mainly attributed …

Generalizing dataset distillation via deep generative prior

G Cazenavette, T Wang, A Torralba… - Proceedings of the …, 2023 - openaccess.thecvf.com
Dataset Distillation aims to distill an entire dataset's knowledge into a few synthetic images.
The idea is to synthesize a small number of synthetic data points that, when given to a …

Scaling up dataset distillation to imagenet-1k with constant memory

J Cui, R Wang, S Si, CJ Hsieh - International Conference on …, 2023 - proceedings.mlr.press
Dataset Distillation is a newly emerging area that aims to distill large datasets into much
smaller and highly informative synthetic ones to accelerate training and reduce storage …

Dataset distillation via factorization

S Liu, K Wang, X Yang, J Ye… - Advances in neural …, 2022 - proceedings.neurips.cc
In this paper, we study dataset distillation (DD), from a novel perspective and introduce
a\emph {dataset factorization} approach, termed\emph {HaBa}, which is a plug-and-play …

Improved distribution matching for dataset condensation

G Zhao, G Li, Y Qin, Y Yu - … of the IEEE/CVF Conference on …, 2023 - openaccess.thecvf.com
Dataset Condensation aims to condense a large dataset into a smaller one while
maintaining its ability to train a well-performing model, thus reducing the storage cost and …

Dataset condensation with distribution matching

B Zhao, H Bilen - Proceedings of the IEEE/CVF Winter …, 2023 - openaccess.thecvf.com
Computational cost of training state-of-the-art deep models in many learning problems is
rapidly increasing due to more sophisticated models and larger datasets. A recent promising …

Dataset quantization

D Zhou, K Wang, J Gu, X Peng, D Lian… - Proceedings of the …, 2023 - openaccess.thecvf.com
State-of-the-art deep neural networks are trained with large amounts (millions or even
billions) of data. The expensive computation and memory costs make it difficult to train them …

Dream: Efficient dataset distillation by representative matching

Y Liu, J Gu, K Wang, Z Zhu… - Proceedings of the …, 2023 - openaccess.thecvf.com
Dataset distillation aims to synthesize small datasets with little information loss from original
large-scale ones for reducing storage and training costs. Recent state-of-the-art methods …

On the diversity and realism of distilled dataset: An efficient dataset distillation paradigm

P Sun, B Shi, D Yu, T Lin - … of the IEEE/CVF Conference on …, 2024 - openaccess.thecvf.com
Contemporary machine learning which involves training large neural networks on massive
datasets faces significant computational challenges. Dataset distillation as a recent …