Communication-efficient edge AI: Algorithms and systems

Y Shi, K Yang, T Jiang, J Zhang… - … Surveys & Tutorials, 2020 - ieeexplore.ieee.org
Artificial intelligence (AI) has achieved remarkable breakthroughs in a wide range of fields,
ranging from speech processing, image classification to drug discovery. This is driven by the …

Feddc: Federated learning with non-iid data via local drift decoupling and correction

L Gao, H Fu, L Li, Y Chen, M Xu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Federated learning (FL) allows multiple clients to collectively train a high-performance
global model without sharing their private data. However, the key challenge in federated …

An efficient framework for clustered federated learning

A Ghosh, J Chung, D Yin… - Advances in Neural …, 2020 - proceedings.neurips.cc
We address the problem of Federated Learning (FL) where users are distributed and
partitioned into clusters. This setup captures settings where different groups of users have …

Federated learning: Challenges, methods, and future directions

T Li, AK Sahu, A Talwalkar… - IEEE signal processing …, 2020 - ieeexplore.ieee.org
Federated learning involves training statistical models over remote devices or siloed data
centers, such as mobile phones or hospitals, while kee** data localized. Training in …

On the convergence of fedavg on non-iid data

X Li, K Huang, W Yang, S Wang, Z Zhang - arxiv preprint arxiv …, 2019 - arxiv.org
Federated learning enables a large amount of edge computing devices to jointly learn a
model without data sharing. As a leading algorithm in this setting, Federated Averaging …

Federated learning via over-the-air computation

K Yang, T Jiang, Y Shi, Z Ding - IEEE transactions on wireless …, 2020 - ieeexplore.ieee.org
The stringent requirements for low-latency and privacy of the emerging high-stake
applications with intelligent devices such as drones and smart vehicles make the cloud …

Byzantine-robust distributed learning: Towards optimal statistical rates

D Yin, Y Chen, R Kannan… - … conference on machine …, 2018 - proceedings.mlr.press
In this paper, we develop distributed optimization algorithms that are provably robust against
Byzantine failures—arbitrary and potentially adversarial behavior, in distributed computing …

Advancements in federated learning: Models, methods, and privacy

H Chen, H Wang, Q Long, D **, Y Li - ACM Computing Surveys, 2024 - dl.acm.org
Federated learning (FL) is a promising technique for resolving the rising privacy and security
concerns. Its main ingredient is to cooperatively learn the model among the distributed …

Adahessian: An adaptive second order optimizer for machine learning

Z Yao, A Gholami, S Shen, M Mustafa… - proceedings of the …, 2021 - ojs.aaai.org
Incorporating second-order curvature information into machine learning optimization
algorithms can be subtle, and doing so naïvely can lead to high per-iteration costs …

Artificial intelligence for UAV-enabled wireless networks: A survey

MA Lahmeri, MA Kishk… - IEEE Open Journal of the …, 2021 - ieeexplore.ieee.org
Unmanned aerial vehicles (UAVs) are considered as one of the promising technologies for
the next-generation wireless communication networks. Their mobility and their ability to …