State-of-the-art and comparative review of adaptive sampling methods for kriging

JN Fuhg, A Fau, U Nackenhorst - Archives of Computational Methods in …, 2021 - Springer
Metamodels aim to approximate characteristics of functions or systems from the knowledge
extracted on only a finite number of samples. In recent years kriging has emerged as a …

Sparse polynomial chaos expansions: Literature survey and benchmark

N Lüthen, S Marelli, B Sudret - SIAM/ASA Journal on Uncertainty …, 2021 - SIAM
Sparse polynomial chaos expansions (PCE) are a popular surrogate modelling method that
takes advantage of the properties of PCE, the sparsity-of-effects principle, and powerful …

[HTML][HTML] Active learning for structural reliability: Survey, general framework and benchmark

M Moustapha, S Marelli, B Sudret - Structural Safety, 2022 - Elsevier
Active learning methods have recently surged in the literature due to their ability to solve
complex structural reliability problems within an affordable computational cost. These …

Non-intrusive surrogate modeling for parametrized time-dependent partial differential equations using convolutional autoencoders

S Nikolopoulos, I Kalogeris, V Papadopoulos - Engineering Applications of …, 2022 - Elsevier
This paper presents a novel non-intrusive surrogate modeling scheme based on deep
learning for predictive modeling of complex systems, described by parametrized time …

Surrogate modelling for an aircraft dynamic landing loads simulation using an LSTM AutoEncoder-based dimensionality reduction approach

M Lazzara, M Chevalier, M Colombo, JG Garcia… - Aerospace Science and …, 2022 - Elsevier
Surrogate modelling can alleviate the computational burden of design activities as they rely
on multiple evaluations of high-fidelity models. However, the learning task can be adversely …

An efficient and versatile Kriging-based active learning method for structural reliability analysis

J Wang, G Xu, P Yuan, Y Li, A Kareem - Reliability Engineering & System …, 2024 - Elsevier
In structural reliability analysis, the development of an efficient and versatile active learning
method applicable to problems of varying complexities remains a challenging task. The …

Dimensionality reduction in surrogate modeling: A review of combined methods

CKJ Hou, K Behdinan - Data Science and Engineering, 2022 - Springer
Surrogate modeling has been popularized as an alternative to full-scale models in complex
engineering processes such as manufacturing and computer-assisted engineering. The …

On the influence of over-parameterization in manifold based surrogates and deep neural operators

K Kontolati, S Goswami, MD Shields… - Journal of Computational …, 2023 - Elsevier
Constructing accurate and generalizable approximators (surrogate models) for complex
physico-chemical processes exhibiting highly non-smooth dynamics is challenging. The …

A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems

K Kontolati, D Loukrezis, DG Giovanis… - Journal of …, 2022 - Elsevier
Constructing surrogate models for uncertainty quantification (UQ) on complex partial
differential equations (PDEs) having inherently high-dimensional O (10 n), n≥ 2, stochastic …

Active learning with generalized sliced inverse regression for high-dimensional reliability analysis

J Yin, X Du - Structural Safety, 2022 - Elsevier
It is computationally expensive to predict reliability using physical models at the design
stage if many random input variables exist. This work introduces a dimension reduction …