A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection

M **, HY Koh, Q Wen, D Zambon… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Time series are the primary data type used to record dynamic system measurements and
generated in great volume by both physical sensors and online processes (virtual sensors) …

The great multivariate time series classification bake off: a review and experimental evaluation of recent algorithmic advances

AP Ruiz, M Flynn, J Large, M Middlehurst… - Data Mining and …, 2021 - Springer
Abstract Time Series Classification (TSC) involves building predictive models for a discrete
target variable from ordered, real valued, attributes. Over recent years, a new set of TSC …

[HTML][HTML] Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry

A Theissler, J Pérez-Velázquez, M Kettelgerdes… - Reliability engineering & …, 2021 - Elsevier
Recent developments in maintenance modelling fueled by data-based approaches such as
machine learning (ML), have enabled a broad range of applications. In the automotive …

A transformer-based framework for multivariate time series representation learning

G Zerveas, S Jayaraman, D Patel… - Proceedings of the 27th …, 2021 - dl.acm.org
We present a novel framework for multivariate time series representation learning based on
the transformer encoder architecture. The framework includes an unsupervised pre-training …

Methods and tools for causal discovery and causal inference

AR Nogueira, A Pugnana, S Ruggieri… - … reviews: data mining …, 2022 - Wiley Online Library
Causality is a complex concept, which roots its developments across several fields, such as
statistics, economics, epidemiology, computer science, and philosophy. In recent years, the …

Minirocket: A very fast (almost) deterministic transform for time series classification

A Dempster, DF Schmidt, GI Webb - … of the 27th ACM SIGKDD conference …, 2021 - dl.acm.org
Rocket achieves state-of-the-art accuracy for time series classification with a fraction of the
computational expense of most existing methods by transforming input time series using …

Tslearn, a machine learning toolkit for time series data

R Tavenard, J Faouzi, G Vandewiele, F Divo… - Journal of machine …, 2020 - jmlr.org
tslearn is a general-purpose Python machine learning library for time series that offers tools
for pre-processing and feature extraction as well as dedicated models for clustering …

Inceptiontime: Finding alexnet for time series classification

H Ismail Fawaz, B Lucas, G Forestier… - Data Mining and …, 2020 - Springer
This paper brings deep learning at the forefront of research into time series classification
(TSC). TSC is the area of machine learning tasked with the categorization (or labelling) of …

Electricity price forecasting on the day-ahead market using machine learning

L Tschora, E Pierre, M Plantevit, C Robardet - Applied Energy, 2022 - Elsevier
The price of electricity on the European market is very volatile. This is due both to its mode of
production by different sources, each with its own constraints (volume of production …

ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels

A Dempster, F Petitjean, GI Webb - Data Mining and Knowledge Discovery, 2020 - Springer
Most methods for time series classification that attain state-of-the-art accuracy have high
computational complexity, requiring significant training time even for smaller datasets, and …