Federated learning for internet of things: A comprehensive survey

DC Nguyen, M Ding, PN Pathirana… - … Surveys & Tutorials, 2021 - ieeexplore.ieee.org
The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of
intelligent services and applications empowered by artificial intelligence (AI). Traditionally …

A review of applications in federated learning

L Li, Y Fan, M Tse, KY Lin - Computers & Industrial Engineering, 2020 - Elsevier
Federated Learning (FL) is a collaboratively decentralized privacy-preserving technology to
overcome challenges of data silos and data sensibility. Exactly what research is carrying the …

Model-contrastive federated learning

Q Li, B He, D Song - … of the IEEE/CVF conference on …, 2021 - openaccess.thecvf.com
Federated learning enables multiple parties to collaboratively train a machine learning
model without communicating their local data. A key challenge in federated learning is to …

Tackling the objective inconsistency problem in heterogeneous federated optimization

J Wang, Q Liu, H Liang, G Joshi… - Advances in neural …, 2020 - proceedings.neurips.cc
In federated learning, heterogeneity in the clients' local datasets and computation speeds
results in large variations in the number of local updates performed by each client in each …

A survey on security and privacy of federated learning

V Mothukuri, RM Parizi, S Pouriyeh, Y Huang… - Future Generation …, 2021 - Elsevier
Federated learning (FL) is a new breed of Artificial Intelligence (AI) that builds upon
decentralized data and training that brings learning to the edge or directly on-device. FL is a …

Federated learning on non-iid data silos: An experimental study

Q Li, Y Diao, Q Chen, B He - 2022 IEEE 38th international …, 2022 - ieeexplore.ieee.org
Due to the increasing privacy concerns and data regulations, training data have been
increasingly fragmented, forming distributed databases of multiple “data silos”(eg, within …

Scaffold: Stochastic controlled averaging for federated learning

SP Karimireddy, S Kale, M Mohri… - International …, 2020 - proceedings.mlr.press
Federated learning is a key scenario in modern large-scale machine learning where the
data remains distributed over a large number of clients and the task is to learn a centralized …

Towards personalized federated learning

AZ Tan, H Yu, L Cui, Q Yang - IEEE transactions on neural …, 2022 - ieeexplore.ieee.org
In parallel with the rapid adoption of artificial intelligence (AI) empowered by advances in AI
research, there has been growing awareness and concerns of data privacy. Recent …

Ditto: Fair and robust federated learning through personalization

T Li, S Hu, A Beirami, V Smith - International conference on …, 2021 - proceedings.mlr.press
Fairness and robustness are two important concerns for federated learning systems. In this
work, we identify that robustness to data and model poisoning attacks and fairness …

Federated learning on non-IID data: A survey

H Zhu, J Xu, S Liu, Y ** - Neurocomputing, 2021 - Elsevier
Federated learning is an emerging distributed machine learning framework for privacy
preservation. However, models trained in federated learning usually have worse …