Intelligent fault diagnosis of machines with small & imbalanced data: A state-of-the-art review and possible extensions
The research on intelligent fault diagnosis has yielded remarkable achievements based on
artificial intelligence-related technologies. In engineering scenarios, machines usually work …
artificial intelligence-related technologies. In engineering scenarios, machines usually work …
Learning from few examples: A summary of approaches to few-shot learning
Few-Shot Learning refers to the problem of learning the underlying pattern in the data just
from a few training samples. Requiring a large number of data samples, many deep learning …
from a few training samples. Requiring a large number of data samples, many deep learning …
Transformers as statisticians: Provable in-context learning with in-context algorithm selection
Neural sequence models based on the transformer architecture have demonstrated
remarkable\emph {in-context learning}(ICL) abilities, where they can perform new tasks …
remarkable\emph {in-context learning}(ICL) abilities, where they can perform new tasks …
What can transformers learn in-context? a case study of simple function classes
In-context learning is the ability of a model to condition on a prompt sequence consisting of
in-context examples (input-output pairs corresponding to some task) along with a new query …
in-context examples (input-output pairs corresponding to some task) along with a new query …
A survey of zero-shot generalisation in deep reinforcement learning
The study of zero-shot generalisation (ZSG) in deep Reinforcement Learning (RL) aims to
produce RL algorithms whose policies generalise well to novel unseen situations at …
produce RL algorithms whose policies generalise well to novel unseen situations at …
Supervised pretraining can learn in-context reinforcement learning
Large transformer models trained on diverse datasets have shown a remarkable ability to
learn in-context, achieving high few-shot performance on tasks they were not explicitly …
learn in-context, achieving high few-shot performance on tasks they were not explicitly …
A survey of meta-reinforcement learning
While deep reinforcement learning (RL) has fueled multiple high-profile successes in
machine learning, it is held back from more widespread adoption by its often poor data …
machine learning, it is held back from more widespread adoption by its often poor data …
Advances and challenges in meta-learning: A technical review
Meta-learning empowers learning systems with the ability to acquire knowledge from
multiple tasks, enabling faster adaptation and generalization to new tasks. This review …
multiple tasks, enabling faster adaptation and generalization to new tasks. This review …
Meta-learning in neural networks: A survey
The field of meta-learning, or learning-to-learn, has seen a dramatic rise in interest in recent
years. Contrary to conventional approaches to AI where tasks are solved from scratch using …
years. Contrary to conventional approaches to AI where tasks are solved from scratch using …
Rethinking few-shot image classification: a good embedding is all you need?
The focus of recent meta-learning research has been on the development of learning
algorithms that can quickly adapt to test time tasks with limited data and low computational …
algorithms that can quickly adapt to test time tasks with limited data and low computational …