Top eigenvalue of a random matrix: large deviations and third order phase transition

SN Majumdar, G Schehr - Journal of Statistical Mechanics …, 2014 - iopscience.iop.org
We study the fluctuations of the largest eigenvalue λ max of N× N random matrices in the
limit of large N. The main focus is on Gaussian β ensembles, including in particular the …

The wasteland of random supergravities

D Marsh, L McAllister, T Wrase - Journal of high energy physics, 2012 - Springer
A bstract We show that in a general\(\mathcal {N}={1}\) supergravity with N≫ 1 scalar fields,
an exponentially small fraction of the de Sitter critical points are metastable vacua. Taking …

Coulumb fluid, Painlevé transcendents, and the information theory of MIMO systems

Y Chen, MR McKay - IEEE Transactions on Information Theory, 2012 - ieeexplore.ieee.org
In this paper, we compute two important information-theoretic quantities which arise in the
application of multiple-input multiple-output (MIMO) antenna wireless communication …

A unified theory of quantum neural network loss landscapes

ER Anschuetz - arxiv preprint arxiv:2408.11901, 2024 - arxiv.org
Classical neural networks with random initialization famously behave as Gaussian
processes in the limit of many neurons, which allows one to completely characterize their …

How many eigenvalues of a Gaussian random matrix are positive?

SN Majumdar, C Nadal, A Scardicchio, P Vivo - Physical Review E—Statistical …, 2011 - APS
We study the probability distribution of the index N+, ie, the number of positive eigenvalues
of an N× N Gaussian random matrix. We show analytically that, for large N and large N+ with …

Free energy expansions of a conditional GinUE and large deviations of the smallest eigenvalue of the LUE

SS Byun, SM Seo, M Yang - arxiv preprint arxiv:2402.18983, 2024 - arxiv.org
We consider a planar Coulomb gas ensemble of size $ N $ with the inverse temperature
$\beta= 2$ and external potential $ Q (z)=| z|^ 2-2c\log| za| $, where $ c> 0$ and …

Random matrix ensemble for the covariance matrix of Ornstein-Uhlenbeck processes with heterogeneous temperatures

LS Ferreira, FL Metz, P Barucca - Physical Review E, 2025 - APS
We introduce a random matrix model for the stationary covariance of multivariate Ornstein-
Uhlenbeck processes with heterogeneous temperatures, where the covariance is …

Recursion scheme for the largest-Wishart–Laguerre eigenvalue and Landauer conductance in quantum transport

PJ Forrester, S Kumar - Journal of Physics A: Mathematical and …, 2019 - iopscience.iop.org
The largest eigenvalue distribution of the Wishart–Laguerre ensemble, indexed by Dyson
parameter and Laguerre parameter a, is fundamental in multivariate statistics and finds …

Top eigenvalue statistics of diluted Wishart matrices

B Budnick, P Forer, P Vivo, S Aufiero… - arxiv preprint arxiv …, 2025 - arxiv.org
Using the replica method, we compute analytically the average largest eigenvalue of diluted
covariance matrices of the form $\mathbf {J}=\mathbf {X}^ T\mathbf {X} $, where $\mathbf {X} …

Optimization landscape in the simplest constrained random least-square problem

YV Fyodorov, R Tublin - Journal of Physics A: Mathematical and …, 2022 - iopscience.iop.org
We analyze statistical features of the'optimization landscape'in a random version of one of
the simplest constrained optimization problems of the least-square type: finding the best …