A survey of convolutional neural networks: analysis, applications, and prospects

Z Li, F Liu, W Yang, S Peng… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
A convolutional neural network (CNN) is one of the most significant networks in the deep
learning field. Since CNN made impressive achievements in many areas, including but not …

[HTML][HTML] Review of image classification algorithms based on convolutional neural networks

L Chen, S Li, Q Bai, J Yang, S Jiang, Y Miao - Remote Sensing, 2021 - mdpi.com
Image classification has always been a hot research direction in the world, and the
emergence of deep learning has promoted the development of this field. Convolutional …

Supervised contrastive learning

P Khosla, P Teterwak, C Wang… - Advances in neural …, 2020 - proceedings.neurips.cc
Contrastive learning applied to self-supervised representation learning has seen a
resurgence in recent years, leading to state of the art performance in the unsupervised …

Vicreg: Variance-invariance-covariance regularization for self-supervised learning

A Bardes, J Ponce, Y LeCun - arxiv preprint arxiv:2105.04906, 2021 - arxiv.org
Recent self-supervised methods for image representation learning are based on maximizing
the agreement between embedding vectors from different views of the same image. A trivial …

Arcface: Additive angular margin loss for deep face recognition

J Deng, J Guo, N Xue… - Proceedings of the IEEE …, 2019 - openaccess.thecvf.com
One of the main challenges in feature learning using Deep Convolutional Neural Networks
(DCNNs) for large-scale face recognition is the design of appropriate loss functions that can …

Rethinking semantic segmentation: A prototype view

T Zhou, W Wang, E Konukoglu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Prevalent semantic segmentation solutions, despite their different network designs (FCN
based or attention based) and mask decoding strategies (parametric softmax based or pixel …

Cosface: Large margin cosine loss for deep face recognition

H Wang, Y Wang, Z Zhou, X Ji… - Proceedings of the …, 2018 - openaccess.thecvf.com
Face recognition has made extraordinary progress owing to the advancement of deep
convolutional neural networks (CNNs). The central task of face recognition, including face …

Deep convolutional neural networks for image classification: A comprehensive review

W Rawat, Z Wang - Neural computation, 2017 - ieeexplore.ieee.org
Convolutional neural networks (CNNs) have been applied to visual tasks since the late
1980s. However, despite a few scattered applications, they were dormant until the mid …

Learning imbalanced datasets with label-distribution-aware margin loss

K Cao, C Wei, A Gaidon… - Advances in neural …, 2019 - proceedings.neurips.cc
Deep learning algorithms can fare poorly when the training dataset suffers from heavy class-
imbalance but the testing criterion requires good generalization on less frequent classes …

Sphereface: Deep hypersphere embedding for face recognition

W Liu, Y Wen, Z Yu, M Li, B Raj… - Proceedings of the …, 2017 - openaccess.thecvf.com
This paper addresses deep face recognition (FR) problem under open-set protocol, where
ideal face features are expected to have smaller maximal intra-class distance than minimal …