Algorithms to estimate Shapley value feature attributions

H Chen, IC Covert, SM Lundberg, SI Lee - Nature Machine Intelligence, 2023 - nature.com
Feature attributions based on the Shapley value are popular for explaining machine
learning models. However, their estimation is complex from both theoretical and …

[HTML][HTML] Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

J Waring, C Lindvall, R Umeton - Artificial intelligence in medicine, 2020 - Elsevier
Objective This work aims to provide a review of the existing literature in the field of
automated machine learning (AutoML) to help healthcare professionals better utilize …

Emerging properties in self-supervised vision transformers

M Caron, H Touvron, I Misra, H Jégou… - Proceedings of the …, 2021 - openaccess.thecvf.com
In this paper, we question if self-supervised learning provides new properties to Vision
Transformer (ViT) that stand out compared to convolutional networks (convnets). Beyond the …

[PDF][PDF] The computational limits of deep learning

NC Thompson, K Greenewald, K Lee… - arxiv preprint arxiv …, 2020 - assets.pubpub.org
Deep learning's recent history has been one of achievement: from triumphing over humans
in the game of Go to world-leading performance in image classification, voice recognition …

Lookahead optimizer: k steps forward, 1 step back

M Zhang, J Lucas, J Ba… - Advances in neural …, 2019 - proceedings.neurips.cc
The vast majority of successful deep neural networks are trained using variants of stochastic
gradient descent (SGD) algorithms. Recent attempts to improve SGD can be broadly …

An overview of online fake news: Characterization, detection, and discussion

X Zhang, AA Ghorbani - Information Processing & Management, 2020 - Elsevier
Over the recent years, the growth of online social media has greatly facilitated the way
people communicate with each other. Users of online social media share information …

A call for clarity in reporting BLEU scores

M Post - arxiv preprint arxiv:1804.08771, 2018 - arxiv.org
The field of machine translation faces an under-recognized problem because of
inconsistency in the reporting of scores from its dominant metric. Although people refer to" …

Hash layers for large sparse models

S Roller, S Sukhbaatar… - Advances in Neural …, 2021 - proceedings.neurips.cc
We investigate the training of sparse layers that use different parameters for different inputs
based on hashing in large Transformer models. Specifically, we modify the feedforward …

Neural machine translation: A review

F Stahlberg - Journal of Artificial Intelligence Research, 2020 - jair.org
The field of machine translation (MT), the automatic translation of written text from one
natural language into another, has experienced a major paradigm shift in recent years …

Deep learning for intelligent wireless networks: A comprehensive survey

Q Mao, F Hu, Q Hao - IEEE Communications Surveys & …, 2018 - ieeexplore.ieee.org
As a promising machine learning tool to handle the accurate pattern recognition from
complex raw data, deep learning (DL) is becoming a powerful method to add intelligence to …