[HTML][HTML] Transformers in medical image analysis

K He, C Gan, Z Li, I Rekik, Z Yin, W Ji, Y Gao, Q Wang… - Intelligent …, 2023 - Elsevier
Transformers have dominated the field of natural language processing and have recently
made an impact in the area of computer vision. In the field of medical image analysis …

Transforming medical imaging with Transformers? A comparative review of key properties, current progresses, and future perspectives

J Li, J Chen, Y Tang, C Wang, BA Landman… - Medical image …, 2023 - Elsevier
Transformer, one of the latest technological advances of deep learning, has gained
prevalence in natural language processing or computer vision. Since medical imaging bear …

Run, don't walk: chasing higher FLOPS for faster neural networks

J Chen, S Kao, H He, W Zhuo, S Wen… - Proceedings of the …, 2023 - openaccess.thecvf.com
To design fast neural networks, many works have been focusing on reducing the number of
floating-point operations (FLOPs). We observe that such reduction in FLOPs, however, does …

Adaptformer: Adapting vision transformers for scalable visual recognition

S Chen, C Ge, Z Tong, J Wang… - Advances in …, 2022 - proceedings.neurips.cc
Abstract Pretraining Vision Transformers (ViTs) has achieved great success in visual
recognition. A following scenario is to adapt a ViT to various image and video recognition …

Vision gnn: An image is worth graph of nodes

K Han, Y Wang, J Guo, Y Tang… - Advances in neural …, 2022 - proceedings.neurips.cc
Network architecture plays a key role in the deep learning-based computer vision system.
The widely-used convolutional neural network and transformer treat the image as a grid or …

Efficientformer: Vision transformers at mobilenet speed

Y Li, G Yuan, Y Wen, J Hu… - Advances in …, 2022 - proceedings.neurips.cc
Abstract Vision Transformers (ViT) have shown rapid progress in computer vision tasks,
achieving promising results on various benchmarks. However, due to the massive number of …

Transformer-based visual segmentation: A survey

X Li, H Ding, H Yuan, W Zhang, J Pang… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Visual segmentation seeks to partition images, video frames, or point clouds into multiple
segments or groups. This technique has numerous real-world applications, such as …

Metaformer is actually what you need for vision

W Yu, M Luo, P Zhou, C Si, Y Zhou… - Proceedings of the …, 2022 - openaccess.thecvf.com
Transformers have shown great potential in computer vision tasks. A common belief is their
attention-based token mixer module contributes most to their competence. However, recent …

Davit: Dual attention vision transformers

M Ding, B **ao, N Codella, P Luo, J Wang… - European conference on …, 2022 - Springer
In this work, we introduce Dual Attention Vision Transformers (DaViT), a simple yet effective
vision transformer architecture that is able to capture global context while maintaining …

Patches are all you need?

A Trockman, JZ Kolter - arxiv preprint arxiv:2201.09792, 2022 - arxiv.org
Although convolutional networks have been the dominant architecture for vision tasks for
many years, recent experiments have shown that Transformer-based models, most notably …