Deep learning modelling techniques: current progress, applications, advantages, and challenges

SF Ahmed, MSB Alam, M Hassan, MR Rozbu… - Artificial Intelligence …, 2023 - Springer
Deep learning (DL) is revolutionizing evidence-based decision-making techniques that can
be applied across various sectors. Specifically, it possesses the ability to utilize two or more …

Machine learning in agriculture: A comprehensive updated review

L Benos, AC Tagarakis, G Dolias, R Berruto, D Kateris… - Sensors, 2021 - mdpi.com
The digital transformation of agriculture has evolved various aspects of management into
artificial intelligent systems for the sake of making value from the ever-increasing data …

Deep learning techniques to classify agricultural crops through UAV imagery: A review

A Bouguettaya, H Zarzour, A Kechida… - Neural computing and …, 2022 - Springer
During the last few years, Unmanned Aerial Vehicles (UAVs) technologies are widely used
to improve agriculture productivity while reducing drudgery, inspection time, and crop …

Deep learning in environmental remote sensing: Achievements and challenges

Q Yuan, H Shen, T Li, Z Li, S Li, Y Jiang, H Xu… - Remote sensing of …, 2020 - Elsevier
Various forms of machine learning (ML) methods have historically played a valuable role in
environmental remote sensing research. With an increasing amount of “big data” from earth …

Object detection and image segmentation with deep learning on Earth observation data: A review—Part II: Applications

T Hoeser, F Bachofer, C Kuenzer - Remote Sensing, 2020 - mdpi.com
In Earth observation (EO), large-scale land-surface dynamics are traditionally analyzed by
investigating aggregated classes. The increase in data with a very high spatial resolution …

Large-scale rice map** under different years based on time-series Sentinel-1 images using deep semantic segmentation model

P Wei, D Chai, T Lin, C Tang, M Du, J Huang - ISPRS journal of …, 2021 - Elsevier
Identifying spatial distribution of crop planting in large-scale is one of the most significant
applications of remote sensing imagery. As an active remote sensing system, synthetic …

Remote sensing-based estimation of rice yields using various models: A critical review

DMG dela Torre, J Gao… - Geo-Spatial Information …, 2021 - Taylor & Francis
Reliable estimation of region-wide rice yield is vital for food security and agricultural
management. Field-scale models have increased our understanding of rice yield and its …

Deep learning for processing and analysis of remote sensing big data: A technical review

X Zhang, Y Zhou, J Luo - Big Earth Data, 2022 - Taylor & Francis
In recent years, the rapid development of Earth observation technology has produced an
increasing growth in remote sensing big data, posing serious challenges for effective and …

Map** paddy rice with satellite remote sensing: A review

R Zhao, Y Li, M Ma - Sustainability, 2021 - mdpi.com
Paddy rice is a staple food of three billion people in the world. Timely and accurate
estimation of the paddy rice planting area and paddy rice yield can provide valuable …