Review of deep learning: concepts, CNN architectures, challenges, applications, future directions

L Alzubaidi, J Zhang, AJ Humaidi, A Al-Dujaili… - Journal of big Data, 2021 - Springer
In the last few years, the deep learning (DL) computing paradigm has been deemed the
Gold Standard in the machine learning (ML) community. Moreover, it has gradually become …

Machine learning approaches to IoT security: A systematic literature review

R Ahmad, I Alsmadi - Internet of Things, 2021 - Elsevier
With the continuous expansion and evolution of IoT applications, attacks on those IoT
applications continue to grow rapidly. In this systematic literature review (SLR) paper, our …

[PDF][PDF] The computational limits of deep learning

NC Thompson, K Greenewald, K Lee… - arxiv preprint arxiv …, 2020 - assets.pubpub.org
Deep learning's recent history has been one of achievement: from triumphing over humans
in the game of Go to world-leading performance in image classification, voice recognition …

Intelligent video surveillance: a review through deep learning techniques for crowd analysis

G Sreenu, S Durai - Journal of Big Data, 2019 - Springer
Big data applications are consuming most of the space in industry and research area.
Among the widespread examples of big data, the role of video streams from CCTV cameras …

Deep learning models for cloud, edge, fog, and IoT computing paradigms: Survey, recent advances, and future directions

S Ahmad, I Shakeel, S Mehfuz, J Ahmad - Computer Science Review, 2023 - Elsevier
In recent times, the machine learning (ML) community has recognized the deep learning
(DL) computing model as the Gold Standard. DL has gradually become the most widely …

[HTML][HTML] Reliability of analog resistive switching memory for neuromorphic computing

M Zhao, B Gao, J Tang, H Qian, H Wu - Applied Physics Reviews, 2020 - pubs.aip.org
As artificial intelligence calls for novel energy-efficient hardware, neuromorphic computing
systems based on analog resistive switching memory (RSM) devices have drawn great …

A study on different deep learning algorithms used in deep neural nets: MLP SOM and DBN

J Naskath, G Sivakamasundari, AAS Begum - Wireless personal …, 2023 - Springer
Deep learning is a wildly popular topic in machine learning and is structured as a series of
nonlinear layers that learns various levels of data representations. Deep learning employs …

[HTML][HTML] Futuristic view of the internet of quantum drones: review, challenges and research agenda

A Kumar, DA de Jesus Pacheco, K Kaushik… - Vehicular …, 2022 - Elsevier
The disruptive technology of unmanned aerial vehicles (UAVs), or drones, is a trend with
increasing applications and practical relevance in the current and future society. Despite the …

Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers

A Perdomo-Ortiz, M Benedetti… - Quantum Science …, 2018 - iopscience.iop.org
With quantum computing technologies nearing the era of commercialization and quantum
supremacy, machine learning (ML) appears as one of the promising'killer'applications …

Artificial intelligence and internet of things (AI-IoT) technologies in response to COVID-19 pandemic: A systematic review

JI Khan, J Khan, F Ali, F Ullah, J Bacha, S Lee - Ieee Access, 2022 - ieeexplore.ieee.org
The origin of the COVID-19 pandemic has given overture to redirection, as well as
innovation to many digital technologies. Even after the progression of vaccination efforts …