Promising directions of machine learning for partial differential equations

SL Brunton, JN Kutz - Nature Computational Science, 2024 - nature.com
Partial differential equations (PDEs) are among the most universal and parsimonious
descriptions of natural physical laws, capturing a rich variety of phenomenology and …

Physics-informed machine learning

GE Karniadakis, IG Kevrekidis, L Lu… - Nature Reviews …, 2021 - nature.com
Despite great progress in simulating multiphysics problems using the numerical
discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate …

Physics-informed neural operator for learning partial differential equations

Z Li, H Zheng, N Kovachki, D **, H Chen… - ACM/JMS Journal of …, 2024 - dl.acm.org
In this article, we propose physics-informed neural operators (PINO) that combine training
data and physics constraints to learn the solution operator of a given family of parametric …

Enhancing computational fluid dynamics with machine learning

R Vinuesa, SL Brunton - Nature Computational Science, 2022 - nature.com
Abstract Machine learning is rapidly becoming a core technology for scientific computing,
with numerous opportunities to advance the field of computational fluid dynamics. Here we …

Laplace neural operator for solving differential equations

Q Cao, S Goswami, GE Karniadakis - Nature Machine Intelligence, 2024 - nature.com
Neural operators map multiple functions to different functions, possibly in different spaces,
unlike standard neural networks. Hence, neural operators allow the solution of parametric …

On neural differential equations

P Kidger - ar**s
between finite-dimensional Euclidean spaces. Recently, this has been generalized to neural …

U-FNO—An enhanced Fourier neural operator-based deep-learning model for multiphase flow

G Wen, Z Li, K Azizzadenesheli, A Anandkumar… - Advances in Water …, 2022 - Elsevier
Numerical simulation of multiphase flow in porous media is essential for many geoscience
applications. Machine learning models trained with numerical simulation data can provide a …

Modern Koopman theory for dynamical systems

SL Brunton, M Budišić, E Kaiser, JN Kutz - arxiv preprint arxiv:2102.12086, 2021 - arxiv.org
The field of dynamical systems is being transformed by the mathematical tools and
algorithms emerging from modern computing and data science. First-principles derivations …