GAN-based anomaly detection: A review

X **a, X Pan, N Li, X He, L Ma, X Zhang, N Ding - Neurocomputing, 2022 - Elsevier
Supervised learning algorithms have shown limited use in the field of anomaly detection due
to the unpredictability and difficulty in acquiring abnormal samples. In recent years …

A unifying review of deep and shallow anomaly detection

L Ruff, JR Kauffmann, RA Vandermeulen… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Deep learning approaches to anomaly detection (AD) have recently improved the state of
the art in detection performance on complex data sets, such as large collections of images or …

Padim: a patch distribution modeling framework for anomaly detection and localization

T Defard, A Setkov, A Loesch, R Audigier - International Conference on …, 2021 - Springer
We present a new framework for Patch Distribution Modeling, PaDiM, to concurrently detect
and localize anomalies in images in a one-class learning setting. PaDiM makes use of a …

Self-supervised predictive convolutional attentive block for anomaly detection

NC Ristea, N Madan, RT Ionescu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Anomaly detection is commonly pursued as a one-class classification problem, where
models can only learn from normal training samples, while being evaluated on both normal …

Fully convolutional cross-scale-flows for image-based defect detection

M Rudolph, T Wehrbein… - Proceedings of the …, 2022 - openaccess.thecvf.com
In industrial manufacturing processes, errors frequently occur at unpredictable times and in
unknown manifestations. We tackle this problem, known as automatic defect detection …

BS3LNet: A New Blind-Spot Self-Supervised Learning Network for Hyperspectral Anomaly Detection

L Gao, D Wang, L Zhuang, X Sun… - … on Geoscience and …, 2023 - ieeexplore.ieee.org
Recent years have witnessed the flourishing of deep learning-based methods in
hyperspectral anomaly detection (HAD). However, the lack of available supervision …

Student-teacher feature pyramid matching for anomaly detection

G Wang, S Han, E Ding, D Huang - arxiv preprint arxiv:2103.04257, 2021 - arxiv.org
Anomaly detection is a challenging task and usually formulated as an one-class learning
problem for the unexpectedness of anomalies. This paper proposes a simple yet powerful …

Registration based few-shot anomaly detection

C Huang, H Guan, A Jiang, Y Zhang… - … on Computer Vision, 2022 - Springer
This paper considers few-shot anomaly detection (FSAD), a practical yet under-studied
setting for anomaly detection (AD), where only a limited number of normal images are …

Surface defect detection methods for industrial products: A review

Y Chen, Y Ding, F Zhao, E Zhang, Z Wu, L Shao - Applied Sciences, 2021 - mdpi.com
The comprehensive intelligent development of the manufacturing industry puts forward new
requirements for the quality inspection of industrial products. This paper summarizes the …

Deep learning for unsupervised anomaly localization in industrial images: A survey

X Tao, X Gong, X Zhang, S Yan… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Currently, deep learning-based visual inspection has been highly successful with the help of
supervised learning methods. However, in real industrial scenarios, the scarcity of defect …