Scientific large language models: A survey on biological & chemical domains

Q Zhang, K Ding, T Lv, X Wang, Q Yin, Y Zhang… - ACM Computing …, 2024 - dl.acm.org
Large Language Models (LLMs) have emerged as a transformative power in enhancing
natural language comprehension, representing a significant stride toward artificial general …

On-device language models: A comprehensive review

J Xu, Z Li, W Chen, Q Wang, X Gao, Q Cai… - arxiv preprint arxiv …, 2024 - arxiv.org
The advent of large language models (LLMs) revolutionized natural language processing
applications, and running LLMs on edge devices has become increasingly attractive for …

How far are we to gpt-4v? closing the gap to commercial multimodal models with open-source suites

Z Chen, W Wang, H Tian, S Ye, Z Gao, E Cui… - Science China …, 2024 - Springer
In this paper, we introduce InternVL 1.5, an open-source multimodal large language model
(MLLM) to bridge the capability gap between open-source and proprietary commercial …

Mathverse: Does your multi-modal llm truly see the diagrams in visual math problems?

R Zhang, D Jiang, Y Zhang, H Lin, Z Guo, P Qiu… - … on Computer Vision, 2024 - Springer
The remarkable progress of Multi-modal Large Language Models (MLLMs) has gained
unparalleled attention. However, their capabilities in visual math problem-solving remain …

Internlm-xcomposer-2.5: A versatile large vision language model supporting long-contextual input and output

P Zhang, X Dong, Y Zang, Y Cao, R Qian… - arxiv preprint arxiv …, 2024 - arxiv.org
We present InternLM-XComposer-2.5 (IXC-2.5), a versatile large-vision language model that
supports long-contextual input and output. IXC-2.5 excels in various text-image …

Kangaroo: A powerful video-language model supporting long-context video input

J Liu, Y Wang, H Ma, X Wu, X Ma, X Wei, J Jiao… - arxiv preprint arxiv …, 2024 - arxiv.org
Rapid advancements have been made in extending Large Language Models (LLMs) to
Large Multi-modal Models (LMMs). However, extending input modality of LLMs to video data …

Llama-moe: Building mixture-of-experts from llama with continual pre-training

T Zhu, X Qu, D Dong, J Ruan, J Tong… - Proceedings of the …, 2024 - aclanthology.org
Abstract Mixture-of-Experts (MoE) has gained increasing popularity as a promising
framework for scaling up large language models (LLMs). However, training MoE from …

Omg-llava: Bridging image-level, object-level, pixel-level reasoning and understanding

T Zhang, X Li, H Fei, H Yuan, S Wu, S Ji… - arxiv preprint arxiv …, 2024 - arxiv.org
Current universal segmentation methods demonstrate strong capabilities in pixel-level
image and video understanding. However, they lack reasoning abilities and cannot be …

Expanding performance boundaries of open-source multimodal models with model, data, and test-time scaling

Z Chen, W Wang, Y Cao, Y Liu, Z Gao, E Cui… - arxiv preprint arxiv …, 2024 - arxiv.org
We introduce InternVL 2.5, an advanced multimodal large language model (MLLM) series
that builds upon InternVL 2.0, maintaining its core model architecture while introducing …

Internlm-xcomposer2-4khd: A pioneering large vision-language model handling resolutions from 336 pixels to 4k hd

X Dong, P Zhang, Y Zang, Y Cao, B Wang… - arxiv preprint arxiv …, 2024 - arxiv.org
The Large Vision-Language Model (LVLM) field has seen significant advancements, yet its
progression has been hindered by challenges in comprehending fine-grained visual content …