Mm-llms: Recent advances in multimodal large language models
In the past year, MultiModal Large Language Models (MM-LLMs) have undergone
substantial advancements, augmenting off-the-shelf LLMs to support MM inputs or outputs …
substantial advancements, augmenting off-the-shelf LLMs to support MM inputs or outputs …
Survey of vulnerabilities in large language models revealed by adversarial attacks
Large Language Models (LLMs) are swiftly advancing in architecture and capability, and as
they integrate more deeply into complex systems, the urgency to scrutinize their security …
they integrate more deeply into complex systems, the urgency to scrutinize their security …
How far are we to gpt-4v? closing the gap to commercial multimodal models with open-source suites
In this paper, we introduce InternVL 1.5, an open-source multimodal large language model
(MLLM) to bridge the capability gap between open-source and proprietary commercial …
(MLLM) to bridge the capability gap between open-source and proprietary commercial …
Mmmu: A massive multi-discipline multimodal understanding and reasoning benchmark for expert agi
We introduce MMMU: a new benchmark designed to evaluate multimodal models on
massive multi-discipline tasks demanding college-level subject knowledge and deliberate …
massive multi-discipline tasks demanding college-level subject knowledge and deliberate …
Deepseek-vl: towards real-world vision-language understanding
We present DeepSeek-VL, an open-source Vision-Language (VL) Model designed for real-
world vision and language understanding applications. Our approach is structured around …
world vision and language understanding applications. Our approach is structured around …
Cambrian-1: A fully open, vision-centric exploration of multimodal llms
We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-
centric approach. While stronger language models can enhance multimodal capabilities, the …
centric approach. While stronger language models can enhance multimodal capabilities, the …
Minicpm-v: A gpt-4v level mllm on your phone
The recent surge of Multimodal Large Language Models (MLLMs) has fundamentally
reshaped the landscape of AI research and industry, shedding light on a promising path …
reshaped the landscape of AI research and industry, shedding light on a promising path …
Mm-vet: Evaluating large multimodal models for integrated capabilities
We propose MM-Vet, an evaluation benchmark that examines large multimodal models
(LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing …
(LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing …
Lvlm-ehub: A comprehensive evaluation benchmark for large vision-language models
Large Vision-Language Models (LVLMs) have recently played a dominant role in
multimodal vision-language learning. Despite the great success, it lacks a holistic evaluation …
multimodal vision-language learning. Despite the great success, it lacks a holistic evaluation …
Monkey: Image resolution and text label are important things for large multi-modal models
Z Li, B Yang, Q Liu, Z Ma, S Zhang… - Proceedings of the …, 2024 - openaccess.thecvf.com
Abstract Large Multimodal Models (LMMs) have shown promise in vision-language tasks but
struggle with high-resolution input and detailed scene understanding. Addressing these …
struggle with high-resolution input and detailed scene understanding. Addressing these …